Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model
- URL: http://arxiv.org/abs/2404.05648v1
- Date: Mon, 8 Apr 2024 16:34:35 GMT
- Title: Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model
- Authors: Jichang Yang, Hegan Chen, Jia Chen, Songqi Wang, Shaocong Wang, Yifei Yu, Xi Chen, Bo Wang, Xinyuan Zhang, Binbin Cui, Yi Li, Ning Lin, Meng Xu, Yi Li, Xiaoxin Xu, Xiaojuan Qi, Zhongrui Wang, Xumeng Zhang, Dashan Shang, Han Wang, Qi Liu, Kwang-Ting Cheng, Ming Liu,
- Abstract summary: Current AIGC methods, such as score-based diffusion, are still deficient in terms of rapidity and efficiency.
We propose a time-continuous and analog in-memory neural differential equation solver for score-based diffusion.
We experimentally validate our solution with 180 nm resistive memory in-memory computing macros.
- Score: 55.116403765330084
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Human brains image complicated scenes when reading a novel. Replicating this imagination is one of the ultimate goals of AI-Generated Content (AIGC). However, current AIGC methods, such as score-based diffusion, are still deficient in terms of rapidity and efficiency. This deficiency is rooted in the difference between the brain and digital computers. Digital computers have physically separated storage and processing units, resulting in frequent data transfers during iterative calculations, incurring large time and energy overheads. This issue is further intensified by the conversion of inherently continuous and analog generation dynamics, which can be formulated by neural differential equations, into discrete and digital operations. Inspired by the brain, we propose a time-continuous and analog in-memory neural differential equation solver for score-based diffusion, employing emerging resistive memory. The integration of storage and computation within resistive memory synapses surmount the von Neumann bottleneck, benefiting the generative speed and energy efficiency. The closed-loop feedback integrator is time-continuous, analog, and compact, physically implementing an infinite-depth neural network. Moreover, the software-hardware co-design is intrinsically robust to analog noise. We experimentally validate our solution with 180 nm resistive memory in-memory computing macros. Demonstrating equivalent generative quality to the software baseline, our system achieved remarkable enhancements in generative speed for both unconditional and conditional generation tasks, by factors of 64.8 and 156.5, respectively. Moreover, it accomplished reductions in energy consumption by factors of 5.2 and 4.1. Our approach heralds a new horizon for hardware solutions in edge computing for generative AI applications.
Related papers
- Topology Optimization of Random Memristors for Input-Aware Dynamic SNN [44.38472635536787]
We introduce pruning optimization for input-aware dynamic memristive spiking neural network (PRIME)
Signal representation-wise, PRIME employs leaky integrate-and-fire neurons to emulate the brain's inherent spiking mechanism.
For reconfigurability, inspired by the brain's dynamic adjustment of computational depth, PRIME employs an input-aware dynamic early stop policy.
arXiv Detail & Related papers (2024-07-26T09:35:02Z) - Voltage-Controlled Magnetoelectric Devices for Neuromorphic Diffusion Process [16.157882920146324]
We develop a spintronic voltage-controlled magnetoelectric memory hardware for the neuromorphic diffusion process.
Together with the non-volatility of magnetic memory, we can achieve high-speed and low-cost computing.
arXiv Detail & Related papers (2024-07-17T02:14:22Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
Traditional signal reconstruction methods on digital computers face both software and hardware challenges.
We propose a systematic approach with software-hardware co-optimizations for signal reconstruction from sparse inputs.
This work advances the AI-driven signal restoration technology and paves the way for future efficient and robust medical AI and 3D vision applications.
arXiv Detail & Related papers (2024-04-15T09:33:09Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM)
Our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems.
arXiv Detail & Related papers (2023-12-14T09:46:16Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AI models present unprecedented challenges to energy consumption and environmental sustainability.
One promising solution is to revisit analogue computing, a technique that predates digital computing.
Here, we report a universal solution, software-hardware co-design using structural plasticity-inspired edge pruning.
arXiv Detail & Related papers (2023-11-13T08:59:01Z) - Biologically Plausible Learning on Neuromorphic Hardware Architectures [27.138481022472]
Neuromorphic computing is an emerging paradigm that confronts this imbalance by computations directly in analog memories.
This work is the first to compare the impact of different learning algorithms on Compute-In-Memory-based hardware and vice versa.
arXiv Detail & Related papers (2022-12-29T15:10:59Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.