Pruning random resistive memory for optimizing analogue AI
- URL: http://arxiv.org/abs/2311.07164v1
- Date: Mon, 13 Nov 2023 08:59:01 GMT
- Title: Pruning random resistive memory for optimizing analogue AI
- Authors: Yi Li, Songqi Wang, Yaping Zhao, Shaocong Wang, Woyu Zhang, Yangu He,
Ning Lin, Binbin Cui, Xi Chen, Shiming Zhang, Hao Jiang, Peng Lin, Xumeng
Zhang, Xiaojuan Qi, Zhongrui Wang, Xiaoxin Xu, Dashan Shang, Qi Liu,
Kwang-Ting Cheng, Ming Liu
- Abstract summary: AI models present unprecedented challenges to energy consumption and environmental sustainability.
One promising solution is to revisit analogue computing, a technique that predates digital computing.
Here, we report a universal solution, software-hardware co-design using structural plasticity-inspired edge pruning.
- Score: 54.21621702814583
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rapid advancement of artificial intelligence (AI) has been marked by the
large language models exhibiting human-like intelligence. However, these models
also present unprecedented challenges to energy consumption and environmental
sustainability. One promising solution is to revisit analogue computing, a
technique that predates digital computing and exploits emerging analogue
electronic devices, such as resistive memory, which features in-memory
computing, high scalability, and nonvolatility. However, analogue computing
still faces the same challenges as before: programming nonidealities and
expensive programming due to the underlying devices physics. Here, we report a
universal solution, software-hardware co-design using structural
plasticity-inspired edge pruning to optimize the topology of a randomly
weighted analogue resistive memory neural network. Software-wise, the topology
of a randomly weighted neural network is optimized by pruning connections
rather than precisely tuning resistive memory weights. Hardware-wise, we reveal
the physical origin of the programming stochasticity using transmission
electron microscopy, which is leveraged for large-scale and low-cost
implementation of an overparameterized random neural network containing
high-performance sub-networks. We implemented the co-design on a 40nm 256K
resistive memory macro, observing 17.3% and 19.9% accuracy improvements in
image and audio classification on FashionMNIST and Spoken digits datasets, as
well as 9.8% (2%) improvement in PR (ROC) in image segmentation on DRIVE
datasets, respectively. This is accompanied by 82.1%, 51.2%, and 99.8%
improvement in energy efficiency thanks to analogue in-memory computing. By
embracing the intrinsic stochasticity and in-memory computing, this work may
solve the biggest obstacle of analogue computing systems and thus unleash their
immense potential for next-generation AI hardware.
Related papers
- Topology Optimization of Random Memristors for Input-Aware Dynamic SNN [44.38472635536787]
We introduce pruning optimization for input-aware dynamic memristive spiking neural network (PRIME)
Signal representation-wise, PRIME employs leaky integrate-and-fire neurons to emulate the brain's inherent spiking mechanism.
For reconfigurability, inspired by the brain's dynamic adjustment of computational depth, PRIME employs an input-aware dynamic early stop policy.
arXiv Detail & Related papers (2024-07-26T09:35:02Z) - Dynamic neural network with memristive CIM and CAM for 2D and 3D vision [57.6208980140268]
We propose a semantic memory-based dynamic neural network (DNN) using memristor.
The network associates incoming data with the past experience stored as semantic vectors.
We validate our co-designs, using a 40nm memristor macro, on ResNet and PointNet++ for classifying images and 3D points from the MNIST and ModelNet datasets.
arXiv Detail & Related papers (2024-07-12T04:55:57Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
Traditional signal reconstruction methods on digital computers face both software and hardware challenges.
We propose a systematic approach with software-hardware co-optimizations for signal reconstruction from sparse inputs.
This work advances the AI-driven signal restoration technology and paves the way for future efficient and robust medical AI and 3D vision applications.
arXiv Detail & Related papers (2024-04-15T09:33:09Z) - Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
Current AIGC methods, such as score-based diffusion, are still deficient in terms of rapidity and efficiency.
We propose a time-continuous and analog in-memory neural differential equation solver for score-based diffusion.
We experimentally validate our solution with 180 nm resistive memory in-memory computing macros.
arXiv Detail & Related papers (2024-04-08T16:34:35Z) - Biologically Plausible Learning on Neuromorphic Hardware Architectures [27.138481022472]
Neuromorphic computing is an emerging paradigm that confronts this imbalance by computations directly in analog memories.
This work is the first to compare the impact of different learning algorithms on Compute-In-Memory-based hardware and vice versa.
arXiv Detail & Related papers (2022-12-29T15:10:59Z) - Edge AI without Compromise: Efficient, Versatile and Accurate
Neurocomputing in Resistive Random-Access Memory [0.0]
We present NeuRRAM - the first multimodal edge AI chip using RRAM CIM.
We show record energy-efficiency $5times$ - $8times$ better than prior art across various computational bit-precisions.
This work paves a way towards building highly efficient and reconfigurable edge AI hardware platforms.
arXiv Detail & Related papers (2021-08-17T21:08:51Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.