論文の概要: Assessment of practical satellite quantum key distribution architectures for current and near-future missions
- arxiv url: http://arxiv.org/abs/2404.05668v1
- Date: Mon, 8 Apr 2024 16:52:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 13:36:07.641675
- Title: Assessment of practical satellite quantum key distribution architectures for current and near-future missions
- Title(参考訳): 衛星量子鍵分布アーキテクチャの現・近未来ミッションへの適用評価
- Authors: Davide Orsucci, Philipp Kleinpaß, Jaspar Meister, Innocenzo De Marco, Stefanie Häusler, Thomas Strang, Nino Walenta, Florian Moll,
- Abstract要約: 本稿では,SatQKDアーキテクチャの集合を構成する設計選択の多様体について概説する。
我々は、離散可変QKDダウンリンクの準備と測定のために、低地球軌道衛星を信頼できるノードとして使用する際の望ましい選択肢とみなす。
BB84のデコイ状態バージョンは、セキュリティ証明の成熟度、キー生成率の高さ、システム複雑性の低さにより、最も有望なQKDプロトコルであることが判明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum key distribution (QKD) allows the generation of cryptographic keys beyond the computational hardness paradigm and is befitting for secure data transmission requiring long-term security. The communication distance of fibre-based QKD, however, is limited to a few hundred kilometers due to the exponential scaling of signal attenuation. Satellite QKD (SatQKD) can instead leverage free-space optical links to establish long-range connections and enable global-scale QKD. In this work we review the manifold of design choices that concur to form the set of possible SatQKD architectures. These include the choice of the QKD protocol and its physical implementation, but also the satellite orbit, the optical link direction, and whether or not to use trusted-node relays. The possible SatQKD architectures are then evaluated in terms of key generation throughput, latency and maximum reachable communication distance, but also the system-level security and implementation complexity. Given the technical challenges of realising SatQKD systems it is paramount, for near-future satellite missions, to adhere to the simplest possible architecture that still allows to deliver the QKD service. We thus identify as advisable options the use of low-Earth orbit satellites as trusted nodes for prepare-and-measure discrete-variable QKD downlinks with weak laser pulses. The decoy-state version of BB84 is found to be the most promising QKD protocols due to the maturity of the security proofs, the high key generation rate and low system complexity. These findings are confirmed by the multitude of current and planned SatQKD missions that are adopting these architectural choices.
- Abstract(参考訳): 量子鍵分散(QKD)は、計算硬度パラダイムを超えた暗号鍵の生成を可能にし、長期のセキュリティを必要とするセキュアなデータ伝送に適している。
しかし、ファイバーベースのQKDの通信距離は、信号減衰の指数的スケーリングにより数百kmに制限されている。
衛星QKD(SatQKD)は、代わりに自由空間光リンクを利用して長距離接続を確立し、グローバルスケールのQKDを可能にする。
本稿では,SatQKDアーキテクチャの集合を構成する設計選択の多様体について概説する。
QKDプロトコルとその物理実装の選択だけでなく、衛星軌道、光リンク方向、信頼ノードリレーの使用の有無なども含まれる。
可能なSatQKDアーキテクチャは、キー生成スループット、レイテンシ、最大到達可能な通信距離の観点から評価されるが、システムレベルのセキュリティと実装の複雑さも評価される。
SatQKDシステムの実現という技術的課題を考えると、近未来の衛星ミッションにとって、QKDサービスの提供を可能にする最も単純なアーキテクチャに従うことが最重要である。
そこで我々は、低地球軌道衛星を、弱いレーザーパルスによる離散可変QKDダウンリンクの準備および測定のための信頼ノードとして使用する際の望ましい選択肢とみなす。
BB84のデコイ状態バージョンは、セキュリティ証明の成熟度、キー生成率の高さ、システム複雑性の低さにより、最も有望なQKDプロトコルであることが判明した。
これらの発見は、現在および計画中のSatQKDミッションによって確認され、これらのアーキテクチャの選択が採用されている。
関連論文リスト
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
我々は,量子古典ネットワーク内でQKDとPQCが相互運用するハイブリッドプロトコルを開発した。
特に、それぞれのアプローチの個々の性能に対して、スピードと/またはセキュリティを向上する可能性のある、異なるハイブリッド設計について検討する。
論文 参考訳(メタデータ) (2024-11-02T00:02:01Z) - End-to-End Demonstration for CubeSatellite Quantum Key Distribution [0.0]
小型ナノサテライトを用いた衛星ベースの量子鍵交換の実現可能性について検討する。
本稿では,キューブ衛星シナリオを対象としたシステムレベルの量子鍵分布の最初のプロトタイプを示す。
論文 参考訳(メタデータ) (2023-12-04T16:25:06Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
量子セキュア直接通信(QSDC)は、確実に安全であり、量子コンピューティングの脅威を克服する。
関連するポイントツーポイント通信プロトコルについて詳述し、情報の保護と送信方法を示す。
論文 参考訳(メタデータ) (2023-11-23T12:40:47Z) - Blockwise Key Distillation in Satellite-based Quantum Key Distribution [68.8891637551539]
衛星ベースの量子鍵分布における2つの鍵蒸留手法を比較した。
一つは、すべての信号を全体として扱う従来の非ブロック戦略である。
もう1つは、同じノイズ特性を持つ個々のブロックに信号を分割し、独立して処理するエムブロックワイズ戦略である。
論文 参考訳(メタデータ) (2023-07-10T01:34:58Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
CV-QSDCシステムの最初の実験実験を行い,その安全性について報告する。
この実現は、将来的な脅威のない量子大都市圏ネットワークへの道を歩み、既存の高度な波長分割多重化(WDM)システムと互換性がある。
論文 参考訳(メタデータ) (2023-06-25T19:23:42Z) - Scaling Limits of Quantum Repeater Networks [62.75241407271626]
量子ネットワーク(QN)は、セキュアな通信、強化されたセンシング、効率的な分散量子コンピューティングのための有望なプラットフォームである。
量子状態の脆弱な性質のため、これらのネットワークはスケーラビリティの観点から大きな課題に直面している。
本稿では,量子リピータネットワーク(QRN)のスケーリング限界について解析する。
論文 参考訳(メタデータ) (2023-05-15T14:57:01Z) - Advances in entanglement-based QKD for space applications [0.0]
量子鍵分布(QKD)は、物理の法則によって保証される暗号鍵をタップで交換することを可能にする。
残る最後の障害の1つは、光子の地上分布中に発生する高い損失であり、通信相手間の距離を制限している。
我々は、自由空間リンク上で実装可能なエンタングルメントベースのQKDの最も関連性の高い進歩についてレビューし、これにより、軌道上のセキュアな鍵の分配を可能にする。
論文 参考訳(メタデータ) (2022-10-05T13:09:36Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
本稿では,古典光とQKD信号の共伝搬のためのアップコンバージョン支援受信機に基づく新しい手法を提案し,実証する。
提案手法は,従来の受信機に比べて高い耐雑音性を示し,従来の4dB高電力条件下での秘密鍵の分配を可能にする。
論文 参考訳(メタデータ) (2021-06-09T13:52:27Z) - Feasibility Study for CubeSat Based Trusted Node Configuration Global
QKD Network [0.0]
量子鍵分散(QKD)は、量子暗号の文脈において最も使用されるプロトコルである。
本稿では,CubeSatsを用いたグローバルQKDネットワークを実現するための技術的課題と可能なソリューションについて要約する。
論文 参考訳(メタデータ) (2021-02-26T15:13:31Z) - Feasibility Assessment For Practical Continuous Variable Quantum Key
Distribution Over The Satellite-to-Earth Channel [0.0]
連続変数(CV)技術を用いた量子鍵分布(QKD)は、短距離地上リンク上でのみ実証されている。
まず、衛星から地球へのチャンネル上でCV-QKDを可能にする概念と技術について概説する。
我々は,多種多様な実用システムモデルにおいて,衛星・地球通信路における情報理論セキュリティを備えたCS-QKDが実現可能であると結論付けた。
論文 参考訳(メタデータ) (2020-05-21T05:08:16Z) - Adaptive Techniques in Practical Quantum Key Distribution [3.5027291542274357]
量子鍵分配(QKD)は、情報理論的に安全な通信を提供する。
QKDの性能は、現実的な情報源、チャンネル、検出器の「実用上の欠陥」によって制限されている。
我々は,革新的プロトコルとアルゴリズム設計による適応的手法を開発し,機械学習のような新しい手法を開発した。
論文 参考訳(メタデータ) (2020-04-23T07:03:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。