論文の概要: Evaluating the Efficacy of Cut-and-Paste Data Augmentation in Semantic Segmentation for Satellite Imagery
- arxiv url: http://arxiv.org/abs/2404.05693v1
- Date: Mon, 8 Apr 2024 17:18:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 13:26:22.829442
- Title: Evaluating the Efficacy of Cut-and-Paste Data Augmentation in Semantic Segmentation for Satellite Imagery
- Title(参考訳): 衛星画像のセマンティックセグメンテーションにおけるカット・アンド・ペーストデータ拡張の有効性の評価
- Authors: Ionut M. Motoi, Leonardo Saraceni, Daniele Nardi, Thomas A. Ciarfuglia,
- Abstract要約: 本研究では,衛星画像のセマンティックセグメンテーションにおけるカット・アンド・ペースト拡張手法の有効性について検討した。
私たちは、通常ラベル付きインスタンスを必要とするこの拡張を、セマンティックセグメンテーションのケースに適用します。
評価のためにDynamicEarthNetデータセットとU-Netモデルを用いて、この拡張により、テストセットのmIoUスコアが37.9から44.1に大幅に向上することを発見した。
- 参考スコア(独自算出の注目度): 4.499833362998487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Satellite imagery is crucial for tasks like environmental monitoring and urban planning. Typically, it relies on semantic segmentation or Land Use Land Cover (LULC) classification to categorize each pixel. Despite the advancements brought about by Deep Neural Networks (DNNs), their performance in segmentation tasks is hindered by challenges such as limited availability of labeled data, class imbalance and the inherent variability and complexity of satellite images. In order to mitigate those issues, our study explores the effectiveness of a Cut-and-Paste augmentation technique for semantic segmentation in satellite images. We adapt this augmentation, which usually requires labeled instances, to the case of semantic segmentation. By leveraging the connected components in the semantic segmentation labels, we extract instances that are then randomly pasted during training. Using the DynamicEarthNet dataset and a U-Net model for evaluation, we found that this augmentation significantly enhances the mIoU score on the test set from 37.9 to 44.1. This finding highlights the potential of the Cut-and-Paste augmentation to improve the generalization capabilities of semantic segmentation models in satellite imagery.
- Abstract(参考訳): 衛星画像は、環境モニタリングや都市計画といったタスクに欠かせない。
通常、各ピクセルを分類するために、セマンティックセグメンテーションまたは土地利用土地被覆(LULC)分類に依存する。
Deep Neural Networks (DNN) によってもたらされた進歩にもかかわらず、それらのセグメンテーションタスクのパフォーマンスは、ラベル付きデータの可用性の制限、クラス不均衡、衛星画像の固有の変動性と複雑さといった課題によって妨げられている。
これらの問題を緩和するため,衛星画像のセマンティックセグメンテーションにおけるカット・アンド・ペースト拡張手法の有効性について検討した。
私たちは、通常ラベル付きインスタンスを必要とするこの拡張を、セマンティックセグメンテーションのケースに適用します。
セマンティックセグメンテーションラベルの接続されたコンポーネントを利用することで、トレーニング中にランダムにペーストされたインスタンスを抽出する。
評価のためにDynamicEarthNetデータセットとU-Netモデルを用いて、この拡張により、テストセットのmIoUスコアが37.9から44.1に大幅に向上することを発見した。
この発見は、衛星画像におけるセマンティックセグメンテーションモデルの一般化能力を改善するために、カット・アンド・ペーストの拡張の可能性を強調している。
関連論文リスト
- Frequency-based Matcher for Long-tailed Semantic Segmentation [22.199174076366003]
我々は、比較的未探索なタスク設定、長い尾のセマンティックセマンティックセグメンテーション(LTSS)に焦点を当てる。
本稿では,セマンティックセグメンテーション手法と長鎖解の性能を示すために,二値評価システムを提案し,LTSSベンチマークを構築した。
また,1対1のマッチングによって過剰な圧縮問題を解決する周波数ベースのマーカであるLTSSを改善するトランスフォーマーベースのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-06T09:57:56Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
我々は,地球観測における注釈付きデータの不足に対処するために,生成的画像拡散の可能性を探る。
我々の知る限りでは、衛星セグメンテーションのための画像と対応するマスクの両方を最初に生成する。
論文 参考訳(メタデータ) (2024-03-25T10:30:22Z) - Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
AuxSegNet+は、サリエンシマップから豊富な情報を探索する弱教師付き補助学習フレームワークである。
また,サリエンシとセグメンテーションの特徴マップから画素レベルの親和性を学習するためのクロスタスク親和性学習機構を提案する。
論文 参考訳(メタデータ) (2024-03-02T10:03:21Z) - COMNet: Co-Occurrent Matching for Weakly Supervised Semantic
Segmentation [13.244183864948848]
我々は,CAMの品質を向上し,オブジェクトの全体に対して注意を払うためにネットワークを強制する,新しいコオカレントマッチングネットワーク(COMNet)を提案する。
具体的には、共通クラスを含むペア画像のマッチングを行い、対応する領域を強化し、単一の画像上にマッチングを構築し、対象領域を横断する意味的特徴を伝達する。
The experiment on the Pascal VOC 2012 and MS-COCO datasets shows our network can effective boost the performance of the baseline model and a new-of-the-art performance。
論文 参考訳(メタデータ) (2023-09-29T03:55:24Z) - Learning Semantic Segmentation with Query Points Supervision on Aerial
Images [62.36946925639107]
セマンティックセグメンテーションアルゴリズムを学習するための弱教師付き学習アルゴリズムを提案する。
提案手法は正確なセマンティックセグメンテーションを行い,手作業のアノテーションに要するコストと時間を大幅に削減することで効率を向上する。
論文 参考訳(メタデータ) (2023-09-11T14:32:04Z) - Location-Aware Self-Supervised Transformers [74.76585889813207]
画像部品の相対的な位置を予測し,セマンティックセグメンテーションのためのネットワークを事前訓練する。
参照パッチのサブセットを問合せのサブセットにマスキングすることで,タスクの難しさを制御します。
実験により,この位置認識事前学習が,いくつかの難解なセマンティックセグメンテーションベンチマークに競合する表現をもたらすことが示された。
論文 参考訳(メタデータ) (2022-12-05T16:24:29Z) - Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with
Self-Supervised Depth Estimation [94.16816278191477]
本稿では,セミアダプティブなセマンティックセマンティックセマンティックセグメンテーションのためのフレームワークを提案する。
ラベルのない画像シーケンスでのみ訓練された自己教師付き単眼深度推定によって強化される。
提案したモデルをCityscapesデータセット上で検証する。
論文 参考訳(メタデータ) (2021-08-28T01:33:38Z) - Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised
Semantic Segmentation [88.49669148290306]
そこで我々はAuxSegNetと呼ばれる弱教師付きマルチタスク・フレームワークを提案し,サリエンシ検出とマルチラベル画像分類を補助タスクとして活用する。
同様の構造的セマンティクスに着想を得て,サリエンシとセグメンテーションの表現から,クロスタスクなグローバル画素レベルの親和性マップを学習することを提案する。
学習されたクロスタスク親和性は、両方のタスクに対して改善された擬似ラベルを提供するために、唾液度予測を洗練し、CAMマップを伝播するために使用することができる。
論文 参考訳(メタデータ) (2021-07-25T11:39:58Z) - Empirical Study of Multi-Task Hourglass Model for Semantic Segmentation
Task [0.7614628596146599]
エッジ検出, 意味輪郭, 距離変換タスクを用いて, セマンティックセグメンテーションタスクを補完するマルチタスク手法を提案する。
本研究では,Cityscapes,CamVid,Freiburg Forestの各データセットにおける時間ガラスモデルのマルチタスク環境における学習の有効性を示す。
論文 参考訳(メタデータ) (2021-05-28T01:08:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。