論文の概要: Dynamic Quality-Diversity Search
- arxiv url: http://arxiv.org/abs/2404.05769v1
- Date: Sun, 7 Apr 2024 19:00:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 18:58:15.262000
- Title: Dynamic Quality-Diversity Search
- Title(参考訳): 動的品質多様性探索
- Authors: Roberto Gallotta, Antonios Liapis, Georgios N. Yannakakis,
- Abstract要約: 本稿では,環境変化時に過去のソリューションのアーカイブを更新し続けることを目的とした,新規で汎用的な動的QD手法を提案する。
第二に、よく知られたベンチマークに容易に適用可能な動的環境の新たな特徴付けについて、静的タスクから動的環境へ移行するための小さな介入を行った。
- 参考スコア(独自算出の注目度): 2.4797200957733576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evolutionary search via the quality-diversity (QD) paradigm can discover highly performing solutions in different behavioural niches, showing considerable potential in complex real-world scenarios such as evolutionary robotics. Yet most QD methods only tackle static tasks that are fixed over time, which is rarely the case in the real world. Unlike noisy environments, where the fitness of an individual changes slightly at every evaluation, dynamic environments simulate tasks where external factors at unknown and irregular intervals alter the performance of the individual with a severity that is unknown a priori. Literature on optimisation in dynamic environments is extensive, yet such environments have not been explored in the context of QD search. This paper introduces a novel and generalisable Dynamic QD methodology that aims to keep the archive of past solutions updated in the case of environment changes. Secondly, we present a novel characterisation of dynamic environments that can be easily applied to well-known benchmarks, with minor interventions to move them from a static task to a dynamic one. Our Dynamic QD intervention is applied on MAP-Elites and CMA-ME, two powerful QD algorithms, and we test the dynamic variants on different dynamic tasks.
- Abstract(参考訳): 品質多様性(QD)パラダイムによる進化的探索は、様々な行動ニッチにおいて高いパフォーマンスのソリューションを発見することができ、進化ロボティクスのような複雑な現実のシナリオにかなりの可能性を秘めている。
しかし、ほとんどのQDメソッドは時間とともに固定される静的タスクにしか対応しない。
個々人の適合度が各評価においてわずかに変化するノイズ環境とは異なり、動的環境は未知の要因と不規則な間隔で外的要因が事前に未知の重症度で個人のパフォーマンスを変化させるタスクをシミュレートする。
動的環境の最適化に関する文献は広く知られているが、QD検索の文脈ではそのような環境は研究されていない。
本稿では,環境変化時に過去のソリューションのアーカイブを更新し続けることを目的とした,新規で汎用的な動的QD手法を提案する。
第二に、よく知られたベンチマークに容易に適用可能な動的環境の新たな特徴付けについて、静的タスクから動的環境へ移行するための小さな介入を行った。
我々の動的QD介入はMAP-ElitesとCMA-MEの2つの強力なQDアルゴリズムに適用され、異なる動的タスク上で動的変動をテストする。
関連論文リスト
- Dynamic Weight Adjusting Deep Q-Networks for Real-Time Environmental Adaptation [3.2162648244439684]
本研究では、動的重み調整をDeep Q-Networks(DQN)に統合し、適応性を高めることを検討する。
これらの調整は、経験リプレイにおけるサンプリング確率を変更して、モデルがより重要な遷移に焦点を合わせるようにすることで実施する。
動的環境をうまくナビゲートする新しいDQNのためのインタラクティブ・ダイナミック・アセスメント・メソッド(IDEM)を設計する。
論文 参考訳(メタデータ) (2024-11-04T19:47:23Z) - EgoGaussian: Dynamic Scene Understanding from Egocentric Video with 3D Gaussian Splatting [95.44545809256473]
エゴガウスアン(EgoGaussian)は、3Dシーンを同時に再構築し、RGBエゴセントリックな入力のみから3Dオブジェクトの動きを動的に追跡する手法である。
動的オブジェクトと背景再構築の品質の両面で,最先端技術と比較して大きな改善が見られた。
論文 参考訳(メタデータ) (2024-06-28T10:39:36Z) - Clustering in Dynamic Environments: A Framework for Benchmark Dataset Generation With Heterogeneous Changes [11.56518009058007]
動的環境におけるクラスタリングは、リアルタイムデータ分析やオンライン教師なし学習から動的施設配置問題まで幅広い応用において、重要性が増している。
静的クラスタリングタスクでは,メタヒューリスティックスが有望な有効性を示している。
これは、さまざまな動的シナリオにおけるクラスタリングアルゴリズムの体系的なパフォーマンス評価を妨げる、多様な、制御可能な、現実的な動的特性を備えた動的データセットの欠如による部分もある。
この欠陥は、動的環境におけるクラスタリングのアルゴリズムを効果的に設計する私たちの理解と能力のギャップにつながる。
論文 参考訳(メタデータ) (2024-02-24T05:49:27Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARDは、火災、洪水、風などの3つの予期せぬ災害シナリオで構成されている。
このベンチマークにより、さまざまなパイプラインで自律エージェントの意思決定能力を評価することができる。
論文 参考訳(メタデータ) (2024-01-23T18:59:43Z) - SpReME: Sparse Regression for Multi-Environment Dynamic Systems [6.7053978622785415]
本研究では,SpReMEと呼ばれるスパースレグレッションの手法を開発し,複数の環境を基盤とする主要な力学を明らかにする。
提案モデルでは,予測性能を向上した4つの動的システム上で,複数の環境から正しいダイナミクスを捕捉することを示した。
論文 参考訳(メタデータ) (2023-02-12T15:45:50Z) - Reproducibility and Baseline Reporting for Dynamic Multi-objective
Benchmark Problems [4.859986264602551]
本稿では,DMOPのパラメータのシミュレーション実験について述べる。
動的アルゴリズム評価のためのベースラインスキーマを導入する。
目的構築された動的アルゴリズムが有用であるために必要な最小限の能力を確立することができる。
論文 参考訳(メタデータ) (2022-04-08T15:50:17Z) - Learning to Walk Autonomously via Reset-Free Quality-Diversity [73.08073762433376]
品質多様性アルゴリズムは、多様かつ高いパフォーマンスのスキルからなる大規模で複雑な行動レパートリーを発見することができる。
既存のQDアルゴリズムは、手動による人間の監督と介入を必要とするエピソードリセットと同様に、多数の評価を必要とする。
本稿では,オープンエンド環境におけるロボットの自律学習に向けたステップとして,リセットフリー品質多様性最適化(RF-QD)を提案する。
論文 参考訳(メタデータ) (2022-04-07T14:07:51Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z) - Dynamic Regret of Policy Optimization in Non-stationary Environments [120.01408308460095]
我々は,POWERとPOWER++の2つのモデルフリーポリシー最適化アルゴリズムを提案し,その動的後悔の保証を確立する。
我々はPOWER++が動的後悔の第2の構成要素であるPOWERよりも優れており、予測によって非定常性に積極的に適応していることを示す。
我々の知識を最大限に活用するために、我々の研究は、非定常環境におけるモデルフリーなRLアルゴリズムの、最初の動的後悔分析である。
論文 参考訳(メタデータ) (2020-06-30T23:34:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。