Dynamic Quality-Diversity Search
- URL: http://arxiv.org/abs/2404.05769v1
- Date: Sun, 7 Apr 2024 19:00:15 GMT
- Title: Dynamic Quality-Diversity Search
- Authors: Roberto Gallotta, Antonios Liapis, Georgios N. Yannakakis,
- Abstract summary: This paper introduces a novel and generalisable Dynamic QD methodology that aims to keep the archive of past solutions updated in the case of environment changes.
Secondly, we present a novel characterisation of dynamic environments that can be easily applied to well-known benchmarks, with minor interventions to move them from a static task to a dynamic one.
- Score: 2.4797200957733576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evolutionary search via the quality-diversity (QD) paradigm can discover highly performing solutions in different behavioural niches, showing considerable potential in complex real-world scenarios such as evolutionary robotics. Yet most QD methods only tackle static tasks that are fixed over time, which is rarely the case in the real world. Unlike noisy environments, where the fitness of an individual changes slightly at every evaluation, dynamic environments simulate tasks where external factors at unknown and irregular intervals alter the performance of the individual with a severity that is unknown a priori. Literature on optimisation in dynamic environments is extensive, yet such environments have not been explored in the context of QD search. This paper introduces a novel and generalisable Dynamic QD methodology that aims to keep the archive of past solutions updated in the case of environment changes. Secondly, we present a novel characterisation of dynamic environments that can be easily applied to well-known benchmarks, with minor interventions to move them from a static task to a dynamic one. Our Dynamic QD intervention is applied on MAP-Elites and CMA-ME, two powerful QD algorithms, and we test the dynamic variants on different dynamic tasks.
Related papers
- Dynamic Weight Adjusting Deep Q-Networks for Real-Time Environmental Adaptation [3.2162648244439684]
This study explores integrating dynamic weight adjustments into Deep Q-Networks (DQN) to enhance their adaptability.
We implement these adjustments by modifying the sampling probabilities in the experience replay to make the model focus more on pivotal transitions.
We design a novel Interactive Dynamic Evaluation Method (IDEM) for DQN that successfully navigates dynamic environments.
arXiv Detail & Related papers (2024-11-04T19:47:23Z) - EgoGaussian: Dynamic Scene Understanding from Egocentric Video with 3D Gaussian Splatting [95.44545809256473]
EgoGaussian is a method capable of simultaneously reconstructing 3D scenes and dynamically tracking 3D object motion from RGB egocentric input alone.
We show significant improvements in terms of both dynamic object and background reconstruction quality compared to the state-of-the-art.
arXiv Detail & Related papers (2024-06-28T10:39:36Z) - Clustering in Dynamic Environments: A Framework for Benchmark Dataset Generation With Heterogeneous Changes [11.56518009058007]
Clustering in dynamic environments is of increasing importance, with broad applications ranging from real-time data analysis and online unsupervised learning to dynamic facility location problems.
meta-heuristics have shown promising effectiveness in static clustering tasks, their application for tracking optimal clustering solutions or robust clustering over time in dynamic environments remains largely underexplored.
This is partly due to a lack of dynamic datasets with diverse, controllable, and realistic dynamic characteristics, hindering systematic performance evaluations of clustering algorithms in various dynamic scenarios.
This deficiency leads to a gap in our understanding and capability to effectively design algorithms for clustering in dynamic environments.
arXiv Detail & Related papers (2024-02-24T05:49:27Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARD consists of three unexpected disaster scenarios, including fire, flood, and wind.
This benchmark enables us to evaluate autonomous agents' decision-making capabilities across various pipelines.
arXiv Detail & Related papers (2024-01-23T18:59:43Z) - SpReME: Sparse Regression for Multi-Environment Dynamic Systems [6.7053978622785415]
We develop a method of sparse regression dubbed SpReME to discover the major dynamics that underlie multiple environments.
We demonstrate that the proposed model captures the correct dynamics from multiple environments over four different dynamic systems with improved prediction performance.
arXiv Detail & Related papers (2023-02-12T15:45:50Z) - Reproducibility and Baseline Reporting for Dynamic Multi-objective
Benchmark Problems [4.859986264602551]
This paper focuses on the simulation experiments for parameters of DMOPs.
A baseline schema for dynamic algorithm evaluation is introduced.
We can establish the minimum capability required of purpose-built dynamic algorithms to be useful.
arXiv Detail & Related papers (2022-04-08T15:50:17Z) - Learning to Walk Autonomously via Reset-Free Quality-Diversity [73.08073762433376]
Quality-Diversity algorithms can discover large and complex behavioural repertoires consisting of both diverse and high-performing skills.
Existing QD algorithms need large numbers of evaluations as well as episodic resets, which require manual human supervision and interventions.
This paper proposes Reset-Free Quality-Diversity optimization (RF-QD) as a step towards autonomous learning for robotics in open-ended environments.
arXiv Detail & Related papers (2022-04-07T14:07:51Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z) - Dynamic Regret of Policy Optimization in Non-stationary Environments [120.01408308460095]
We propose two model-free policy optimization algorithms, POWER and POWER++, and establish guarantees for their dynamic regret.
We show that POWER++ improves over POWER on the second component of the dynamic regret by actively adapting to non-stationarity through prediction.
To the best of our knowledge, our work is the first dynamic regret analysis of model-free RL algorithms in non-stationary environments.
arXiv Detail & Related papers (2020-06-30T23:34:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.