Estimate of the time required to perform a nonadiabatic holonomic quantum computation
- URL: http://arxiv.org/abs/2404.05844v2
- Date: Tue, 25 Jun 2024 12:03:51 GMT
- Title: Estimate of the time required to perform a nonadiabatic holonomic quantum computation
- Authors: Ole Sönnerborn,
- Abstract summary: Nonadiabatic holonomic quantum computation has been proposed as a method to implement quantum logic gates with robustness comparable to that of adiabatic holonomic gates but with shorter execution times.
We show that the procedures for implementing a universal set of holonomic gates proposed in a pioneering paper on nonadiabatic holonomic quantum computation saturate the isoholonomic inequality and are thus time optimal.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nonadiabatic holonomic quantum computation has been proposed as a method to implement quantum logic gates with robustness comparable to that of adiabatic holonomic gates but with shorter execution times. In this paper, we establish an isoholonomic inequality for quantum gates, which provides a lower bound on the lengths of cyclic transformations of the computational space that generate a specific gate. Then, as a corollary, we derive a nonadiabatic execution time estimate for holonomic gates. In addition, we demonstrate that under certain dimensional conditions, the isoholonomic inequality is tight in the sense that every gate on the computational space can be implemented holonomically and unitarily in a time-optimal way. We illustrate the results by showing that the procedures for implementing a universal set of holonomic gates proposed in a pioneering paper on nonadiabatic holonomic quantum computation saturate the isoholonomic inequality and are thus time optimal.
Related papers
- Parallel transport in rotating frames and projective holonomic quantum computation [0.0]
We develop a framework for nonadiabatic holonomic quantum computation with projective gates.
We extend the isoholonomic inequality to projective gates, establishing a minimum execution time for projective holonomic quantum gates.
arXiv Detail & Related papers (2024-05-31T14:08:55Z) - General approach to realize optimized nonadiabatic holonomic quantum
computation [0.0]
We put forward the general form of reverse Hamiltonian to realize the optimized nonadiabatic holonomic quantum computation gate.
Our approach might give a new horizon to realize high-fidelity quantum gate.
arXiv Detail & Related papers (2023-10-17T02:10:22Z) - Accelerated super-robust nonadiabatic holonomic quantum gates [4.5867495327952845]
In previous conventional schemes, the states of the calculation subspace have always leaked to the noncomputation subspace.
We propose a solution to the problem without the severe limitation of the much longer gate time.
Our numerical simulations indicate that the decoherence-induced gate errors of our scheme are greatly decreased.
arXiv Detail & Related papers (2023-04-04T08:19:33Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Noncyclic Geometric Quantum Gates with Smooth Paths via Invariant-based
Shortcuts [4.354697470999286]
We propose a scheme to realize geometric quantum gates with noncyclic and nonadiabatic evolution via invariant-based shortcuts.
Our scheme provides a promising way to realize high-fidelity fault-tolerant quantum gates for scalable quantum computation.
arXiv Detail & Related papers (2021-02-01T15:05:29Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates with Two Dark Paths in a Trapped Ion [41.36300605844117]
We show nonadiabatic holonomic single-qubit quantum gates on two dark paths in a trapped $171mathrmYb+$ ion based on four-level systems with resonant drives.
We find that nontrivial holonomic two-qubit quantum gates can also be realized within current experimental technologies.
arXiv Detail & Related papers (2021-01-19T06:57:50Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates\\ with Optimal Control in a Trapped Ion [38.217839102257365]
We experimentally demonstrate nonadiabatic holonomic single qubit quantum gates with optimal control in a trapped Yb ion.
Compared with corresponding previous geometric gates and conventional dynamic gates, the superiority of our scheme is that it is more robust against control amplitude errors.
arXiv Detail & Related papers (2020-06-08T14:06:06Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.