LATUP-Net: A Lightweight 3D Attention U-Net with Parallel Convolutions for Brain Tumor Segmentation
- URL: http://arxiv.org/abs/2404.05911v2
- Date: Mon, 25 Nov 2024 15:50:52 GMT
- Title: LATUP-Net: A Lightweight 3D Attention U-Net with Parallel Convolutions for Brain Tumor Segmentation
- Authors: Ebtihal J. Alwadee, Xianfang Sun, Yipeng Qin, Frank C. Langbein,
- Abstract summary: LATUP-Net is a lightweight 3D ATtention U-Net with Parallel convolutions.
It is specifically designed to reduce computational requirements significantly while maintaining high segmentation performance.
It achieves promising segmentation performance: the average Dice scores for the whole tumor, tumor core, and enhancing tumor on the BraTS 2020 dataset are 88.41%, 83.82%, and 73.67%, and on the BraTS 2021 dataset, they are 90.29%, 89.54%, and 83.92%, respectively.
- Score: 7.1789008189318455
- License:
- Abstract: Early-stage 3D brain tumor segmentation from magnetic resonance imaging (MRI) scans is crucial for prompt and effective treatment. However, this process faces the challenge of precise delineation due to the tumors' complex heterogeneity. Moreover, energy sustainability targets and resource limitations, especially in developing countries, require efficient and accessible medical imaging solutions. The proposed architecture, a Lightweight 3D ATtention U-Net with Parallel convolutions, LATUP-Net, addresses these issues. It is specifically designed to reduce computational requirements significantly while maintaining high segmentation performance. By incorporating parallel convolutions, it enhances feature representation by capturing multi-scale information. It further integrates an attention mechanism to refine segmentation through selective feature recalibration. LATUP-Net achieves promising segmentation performance: the average Dice scores for the whole tumor, tumor core, and enhancing tumor on the BraTS 2020 dataset are 88.41%, 83.82%, and 73.67%, and on the BraTS 2021 dataset, they are 90.29%, 89.54%, and 83.92%, respectively. Hausdorff distance metrics further indicate its improved ability to delineate tumor boundaries. With its significantly reduced computational demand using only 3.07M parameters, about 59 times fewer than other state-of-the-art models, and running on a single NVIDIA GeForce RTX3060 12GB GPU, LATUP-Net requires just 15.79 GFLOPs. This makes it a promising solution for real-world clinical applications, particularly in settings with limited resources. Investigations into the model's interpretability, utilizing gradient-weighted class activation mapping and confusion matrices, reveal that while attention mechanisms enhance the segmentation of small regions, their impact is nuanced. Achieving the most [...]. The code is available at https://qyber.black/ca/code-bca.
Related papers
- Multimodal 3D Brain Tumor Segmentation with Adversarial Training and Conditional Random Field [44.027635932094064]
We propose a multimodal 3D Volume Generative Adversarial Network (3D-vGAN) for precise segmentation.
The model utilizes Pseudo-3D for V-net improvement, adds conditional random field after generator and use original image as supplemental guidance.
Results, using the BraTS-2018 dataset, show that 3D-vGAN outperforms classical segmentation models, including U-net, Gan, FCN and 3D V-net, reaching specificity over 99.8%.
arXiv Detail & Related papers (2024-11-21T18:52:02Z) - MBDRes-U-Net: Multi-Scale Lightweight Brain Tumor Segmentation Network [0.0]
This study proposes the MBDRes-U-Net model using the three-dimensional (3D) U-Net framework, which integrates multibranch residual blocks and fused attention into the model.
The computational burden of the model is reduced by the branch strategy, which effectively uses the rich local features in multimodal images.
arXiv Detail & Related papers (2024-11-04T09:03:43Z) - Attention-Enhanced Hybrid Feature Aggregation Network for 3D Brain Tumor Segmentation [0.9897828700959131]
Glioblastoma is a highly aggressive and malignant brain tumor type that requires early diagnosis and prompt intervention.
To address this challenge, Artificial Intelligence (AI)-driven approaches in healthcare have generated interest in efficiently diagnosing and evaluating brain tumors.
In our approach, we utilize a multi-scale, attention-guided and hybrid U-Net-shaped model -- GLIMS -- to perform 3D brain tumor segmentation.
arXiv Detail & Related papers (2024-03-15T00:52:17Z) - PMFSNet: Polarized Multi-scale Feature Self-attention Network For
Lightweight Medical Image Segmentation [6.134314911212846]
Current state-of-the-art medical image segmentation methods prioritize accuracy but often at the expense of increased computational demands and larger model sizes.
We propose PMFSNet, a novel medical imaging segmentation model that balances global local feature processing while avoiding computational redundancy.
It incorporates a plug-and-play PMFS block, a multi-scale feature enhancement module based on attention mechanisms, to capture long-term dependencies.
arXiv Detail & Related papers (2024-01-15T10:26:47Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models.
We show that our novel network achieves remarkable dice performance (84.37% on ASACA500 and 80.32% on ImageCAS) in tubular vessel segmentation tasks.
arXiv Detail & Related papers (2024-01-11T19:07:58Z) - 3D Medical Image Segmentation based on multi-scale MPU-Net [5.393743755706745]
This paper proposes a tumor segmentation model MPU-Net for patient volume CT images.
It is inspired by Transformer with a global attention mechanism.
Compared with the benchmark model U-Net, MPU-Net shows excellent segmentation results.
arXiv Detail & Related papers (2023-07-11T20:46:19Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - HI-Net: Hyperdense Inception 3D UNet for Brain Tumor Segmentation [17.756591105686]
This paper proposes hyperdense inception 3D UNet (HI-Net), which captures multi-scale information by stacking factorization of 3D weighted convolutional layers in the residual inception block.
Preliminary results on the BRATS 2020 testing set show that achieved by our proposed approach, the dice (DSC) scores of ET, WT, and TC are 0.79457, 0.87494, and 0.83712, respectively.
arXiv Detail & Related papers (2020-12-12T09:09:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.