MBDRes-U-Net: Multi-Scale Lightweight Brain Tumor Segmentation Network
- URL: http://arxiv.org/abs/2411.01896v1
- Date: Mon, 04 Nov 2024 09:03:43 GMT
- Title: MBDRes-U-Net: Multi-Scale Lightweight Brain Tumor Segmentation Network
- Authors: Longfeng Shen, Yanqi Hou, Jiacong Chen, Liangjin Diao, Yaxi Duan,
- Abstract summary: This study proposes the MBDRes-U-Net model using the three-dimensional (3D) U-Net framework, which integrates multibranch residual blocks and fused attention into the model.
The computational burden of the model is reduced by the branch strategy, which effectively uses the rich local features in multimodal images.
- Score: 0.0
- License:
- Abstract: Accurate segmentation of brain tumors plays a key role in the diagnosis and treatment of brain tumor diseases. It serves as a critical technology for quantifying tumors and extracting their features. With the increasing application of deep learning methods, the computational burden has become progressively heavier. To achieve a lightweight model with good segmentation performance, this study proposes the MBDRes-U-Net model using the three-dimensional (3D) U-Net codec framework, which integrates multibranch residual blocks and fused attention into the model. The computational burden of the model is reduced by the branch strategy, which effectively uses the rich local features in multimodal images and enhances the segmentation performance of subtumor regions. Additionally, during encoding, an adaptive weighted expansion convolution layer is introduced into the multi-branch residual block, which enriches the feature expression and improves the segmentation accuracy of the model. Experiments on the Brain Tumor Segmentation (BraTS) Challenge 2018 and 2019 datasets show that the architecture could maintain a high precision of brain tumor segmentation while considerably reducing the calculation overhead.Our code is released at https://github.com/Huaibei-normal-university-cv-laboratory/mbdresunet
Related papers
- Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - An Optimization Framework for Processing and Transfer Learning for the
Brain Tumor Segmentation [2.0886519175557368]
We have constructed an optimization framework based on a 3D U-Net model for brain tumor segmentation.
This framework incorporates a range of techniques, including various pre-processing and post-processing techniques, and transfer learning.
On the validation datasets, this multi-modality brain tumor segmentation framework achieves an average lesion-wise Dice score of 0.79, 0.72, 0.74 on Challenges 1, 2, 3 respectively.
arXiv Detail & Related papers (2024-02-10T18:03:15Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - Learning from partially labeled data for multi-organ and tumor
segmentation [102.55303521877933]
We propose a Transformer based dynamic on-demand network (TransDoDNet) that learns to segment organs and tumors on multiple datasets.
A dynamic head enables the network to accomplish multiple segmentation tasks flexibly.
We create a large-scale partially labeled Multi-Organ and Tumor benchmark, termed MOTS, and demonstrate the superior performance of our TransDoDNet over other competitors.
arXiv Detail & Related papers (2022-11-13T13:03:09Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - HI-Net: Hyperdense Inception 3D UNet for Brain Tumor Segmentation [17.756591105686]
This paper proposes hyperdense inception 3D UNet (HI-Net), which captures multi-scale information by stacking factorization of 3D weighted convolutional layers in the residual inception block.
Preliminary results on the BRATS 2020 testing set show that achieved by our proposed approach, the dice (DSC) scores of ET, WT, and TC are 0.79457, 0.87494, and 0.83712, respectively.
arXiv Detail & Related papers (2020-12-12T09:09:04Z) - Context Aware 3D UNet for Brain Tumor Segmentation [24.27997192961372]
UNet is the primary source in the performance of 3D CNN architectures for medical imaging tasks.
We propose a modified UNet architecture for brain tumor segmentation.
arXiv Detail & Related papers (2020-10-25T10:32:25Z) - Brain tumour segmentation using cascaded 3D densely-connected U-net [10.667165962654996]
We propose a deep-learning based method to segment a brain tumour into its subregions.
The proposed architecture is a 3D convolutional neural network based on a variant of the U-Net architecture.
Experimental results on the BraTS20 validation dataset demonstrate that the proposed model achieved average Dice Scores of 0.90, 0.82, and 0.78 for whole tumour, tumour core and enhancing tumour respectively.
arXiv Detail & Related papers (2020-09-16T09:14:59Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
We show improved anomaly segmentation performance and the general capability to obtain much more crisp reconstructions of input data at native resolution.
The modeling of the laplacian pyramid further enables the delineation and aggregation of lesions at multiple scales.
arXiv Detail & Related papers (2020-06-23T09:20:42Z) - Robust Semantic Segmentation of Brain Tumor Regions from 3D MRIs [2.4736005621421686]
Multimodal brain tumor segmentation challenge (BraTS) brings together researchers to improve automated methods for 3D MRI brain tumor segmentation.
We evaluate the method on BraTS 2019 challenge.
arXiv Detail & Related papers (2020-01-06T07:47:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.