論文の概要: JSTR: Judgment Improves Scene Text Recognition
- arxiv url: http://arxiv.org/abs/2404.05967v1
- Date: Tue, 9 Apr 2024 02:55:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 16:08:32.969233
- Title: JSTR: Judgment Improves Scene Text Recognition
- Title(参考訳): JSTR: 判決によってシーンテキスト認識が改善される
- Authors: Masato Fujitake,
- Abstract要約: 本稿では,画像とテキストが一致しているかを判断することで,シーンテキスト認識タスクの精度を向上させる手法を提案する。
この方法は、モデルが誤認識しそうなデータに対して明示的なフィードバックを提供することで、テキスト認識の精度を高める。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a method for enhancing the accuracy of scene text recognition tasks by judging whether the image and text match each other. While previous studies focused on generating the recognition results from input images, our approach also considers the model's misrecognition results to understand its error tendencies, thus improving the text recognition pipeline. This method boosts text recognition accuracy by providing explicit feedback on the data that the model is likely to misrecognize by predicting correct or incorrect between the image and text. The experimental results on publicly available datasets demonstrate that our proposed method outperforms the baseline and state-of-the-art methods in scene text recognition.
- Abstract(参考訳): 本稿では,画像とテキストが一致しているかを判断することで,シーンテキスト認識タスクの精度を向上させる手法を提案する。
過去の研究では、入力画像から認識結果を生成することに焦点を当てていたが、本手法では、モデルの誤認識結果をその誤り傾向を理解するために考慮し、テキスト認識パイプラインを改善した。
本手法は,画像とテキスト間の誤りや誤りを予測することにより,モデルが誤認識しそうなデータに対する明示的なフィードバックを提供することで,テキスト認識精度を向上させる。
公開データセットを用いた実験結果から,提案手法はシーンテキスト認識におけるベースライン法や最先端手法よりも優れていることが示された。
関連論文リスト
- UNIT: Unifying Image and Text Recognition in One Vision Encoder [51.140564856352825]
UNITは、単一のモデル内で画像とテキストの認識を統一することを目的とした、新しいトレーニングフレームワークである。
文書関連タスクにおいて,UNITが既存の手法を著しく上回ることを示す。
注目すべきなのは、UNITはオリジナルのビジョンエンコーダアーキテクチャを保持しており、推論とデプロイメントの点で費用がかからないことだ。
論文 参考訳(メタデータ) (2024-09-06T08:02:43Z) - Efficiently Leveraging Linguistic Priors for Scene Text Spotting [63.22351047545888]
本稿では,大規模テキストコーパスから言語知識を活用する手法を提案する。
シーンテキストデータセットとよく一致したテキスト分布を生成し、ドメイン内の微調整の必要性を取り除く。
実験結果から,本手法は認識精度を向上するだけでなく,単語のより正確な局所化を可能にすることが示された。
論文 参考訳(メタデータ) (2024-02-27T01:57:09Z) - Orientation-Independent Chinese Text Recognition in Scene Images [61.34060587461462]
本研究は,テキスト画像のコンテンツと方向情報を切り離すことにより,向きに依存しない視覚特徴を抽出する試みである。
具体的には,不整合コンテンツと向き情報を用いて対応する文字イメージを復元する文字画像再構成ネットワーク(CIRN)を提案する。
論文 参考訳(メタデータ) (2023-09-03T05:30:21Z) - DiffusionSTR: Diffusion Model for Scene Text Recognition [0.0]
Diffusion Model for Scene Text Recognition (DiffusionSTR)は、エンドツーエンドのテキスト認識フレームワークである。
拡散モデルがテキスト認識に適用可能であることを示す。
論文 参考訳(メタデータ) (2023-06-29T06:09:32Z) - CLIPTER: Looking at the Bigger Picture in Scene Text Recognition [10.561377899703238]
私たちは、CLIPのような現代視覚言語モデルの能力を利用して、作物ベースの認識者にシーンレベルの情報を提供する。
我々は,視覚言語モデルから得られた画像全体の表現を,クロスアテンションゲート機構を介して認識語レベルの特徴と融合させることにより,これを実現する。
論文 参考訳(メタデータ) (2023-01-18T12:16:19Z) - Self-supervised Character-to-Character Distillation for Text Recognition [54.12490492265583]
そこで本研究では,テキスト表現学習を容易にする汎用的な拡張を可能にする,自己教師型文字-文字-文字間蒸留法CCDを提案する。
CCDは、テキスト認識の1.38%、テキストセグメンテーションの1.7%、PSNRの0.24dB、超解像の0.0321(SSIM)で、最先端の結果を達成する。
論文 参考訳(メタデータ) (2022-11-01T05:48:18Z) - Reading and Writing: Discriminative and Generative Modeling for
Self-Supervised Text Recognition [101.60244147302197]
テキスト画像の識別と生成を学習するために,コントラスト学習とマスク付き画像モデリングを導入する。
本手法は,不規則なシーンテキスト認識データセットにおいて,従来の自己教師付きテキスト認識手法を10.2%~20.2%向上させる。
提案したテキスト認識器は,11のベンチマークで平均5.3%の精度で従来のテキスト認識手法を上回り,モデルサイズが類似している。
論文 参考訳(メタデータ) (2022-07-01T03:50:26Z) - Knowledge Mining with Scene Text for Fine-Grained Recognition [53.74297368412834]
本研究では,シーンテキスト画像の背景にある暗黙的な文脈知識をマイニングする,エンドツーエンドのトレーニング可能なネットワークを提案する。
我々は,KnowBertを用いて意味表現の関連知識を検索し,それを画像特徴と組み合わせ,きめ細かい分類を行う。
本手法は,3.72%のmAPと5.39%のmAPをそれぞれ上回っている。
論文 参考訳(メタデータ) (2022-03-27T05:54:00Z) - IFR: Iterative Fusion Based Recognizer For Low Quality Scene Text
Recognition [20.741958198581173]
高品質なシーンテキスト認識のためのイテレーティブフュージョンベース認識(IFR)を提案する。
IFRには2つのブランチがあり、それぞれ、シーンテキスト認識と低品質のシーンテキストイメージリカバリに焦点を当てている。
2つの枝の特徴表現を強化するために,特徴融合モジュールを提案する。
論文 参考訳(メタデータ) (2021-08-13T10:45:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。