論文の概要: A Lightweight Measure of Classification Difficulty from Application Dataset Characteristics
- arxiv url: http://arxiv.org/abs/2404.05981v2
- Date: Tue, 29 Oct 2024 22:22:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:24:23.364956
- Title: A Lightweight Measure of Classification Difficulty from Application Dataset Characteristics
- Title(参考訳): 応用データセット特性による分類難度の軽量化
- Authors: Bryan Bo Cao, Abhinav Sharma, Lawrence O'Gorman, Michael Coss, Shubham Jain,
- Abstract要約: 効率的なコサイン類似度に基づく分類困難度尺度Sを提案する。
データセットのクラス数とクラス内およびクラス間の類似度メトリクスから計算される。
この手法を実践者が、繰り返しトレーニングやテストによって、6倍から29倍の速度で効率の良いモデルを選択するのにどのように役立つかを示す。
- 参考スコア(独自算出の注目度): 4.220363193932374
- License:
- Abstract: Although accuracy and computation benchmarks are widely available to help choose among neural network models, these are usually trained on datasets with many classes, and do not give a good idea of performance for few (< 10) classes. The conventional procedure to predict performance involves repeated training and testing on the different models and dataset variations. We propose an efficient cosine similarity-based classification difficulty measure S that is calculated from the number of classes and intra- and inter-class similarity metrics of the dataset. After a single stage of training and testing per model family, relative performance for different datasets and models of the same family can be predicted by comparing difficulty measures - without further training and testing. Our proposed method is verified by extensive experiments on 8 CNN and ViT models and 7 datasets. Results show that S is highly correlated to model accuracy with correlation coefficient |r| = 0.796, outperforming the baseline Euclidean distance at |r| = 0.66. We show how a practitioner can use this measure to help select an efficient model 6 to 29x faster than through repeated training and testing. We also describe using the measure for an industrial application in which options are identified to select a model 42% smaller than the baseline YOLOv5-nano model, and if class merging from 3 to 2 classes meets requirements, 85% smaller.
- Abstract(参考訳): 精度と計算のベンチマークはニューラルネットワークモデルの選択に役立っているが、通常は多くのクラスを持つデータセットでトレーニングされている。
パフォーマンスを予測する従来の手順は、異なるモデルとデータセットのバリエーションに対する反復的なトレーニングとテストを含む。
本稿では,データセットのクラス数とクラス内およびクラス間類似度指標から算出したコサイン類似度に基づく効率的な分類困難度尺度Sを提案する。
モデルファミリごとのトレーニングとテストの単一段階の後、異なるデータセットと同じファミリのモデルに対する相対的なパフォーマンスは、さらなるトレーニングやテストなしに、困難な測定値を比較することで予測できる。
提案手法は,8つのCNNおよびViTモデルと7つのデータセットに関する広範囲な実験により検証された。
その結果、Sは相関係数 |r| = 0.796 のモデル精度と高い相関を示し、ベースラインユークリッド距離 |r| = 0.66 を上回った。
この手法を実践者が、繰り返しトレーニングやテストによって、6倍から29倍の速度で効率の良いモデルを選択するのにどのように役立つかを示す。
また, 基礎となるYOLOv5-nanoモデルよりも42%小さいモデルを選択するオプションが選択可能であり, 3クラスから2クラスにマージしたクラスが要件を満たす場合, 85%小さいモデルを選択することができる産業用アプリケーションとして, この尺度を用いた。
関連論文リスト
- Uncertainty-aware Sampling for Long-tailed Semi-supervised Learning [89.98353600316285]
擬似ラベルサンプリングのモデル化プロセスに不確実性を導入し、各クラスにおけるモデル性能が異なる訓練段階によって異なることを考慮した。
このアプローチにより、モデルは異なる訓練段階における擬似ラベルの不確かさを認識でき、それによって異なるクラスの選択閾値を適応的に調整できる。
FixMatchのような他の手法と比較して、UDTSは自然シーン画像データセットの精度を少なくとも5.26%、1.75%、9.96%、1.28%向上させる。
論文 参考訳(メタデータ) (2024-01-09T08:59:39Z) - Stabilizing Subject Transfer in EEG Classification with Divergence
Estimation [17.924276728038304]
脳波分類タスクを記述するためのグラフィカルモデルをいくつか提案する。
理想的な訓練シナリオにおいて真であるべき統計的関係を同定する。
我々は、これらの関係を2段階で強制する正規化罰則を設計する。
論文 参考訳(メタデータ) (2023-10-12T23:06:52Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
本稿では,大規模な微分モデルに対して有効かつ計算的に抽出可能なデータ属性法であるTRAK(Tracing with Randomly-trained After Kernel)を提案する。
論文 参考訳(メタデータ) (2023-03-24T17:56:22Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
深層学習のためのクラス内適応拡張(IAA)フレームワークを提案する。
クラスごとのクラス内変動を合理的に推定し, 適応型合成試料を生成し, 硬質試料の採掘を支援する。
本手法は,検索性能の最先端手法を3%~6%向上させる。
論文 参考訳(メタデータ) (2022-11-29T14:52:38Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
2つの医用画像データセットのセマンティックセグメンテーションにパラメータ効率が良いが効果的な適応を実現するために,いくつかのコントリビューションを提案し,検討する。
我々はこのアーキテクチャを、オンライン生成プロトタイプへの割り当てに基づく専用密集型セルフスーパービジョンスキームで事前訓練する。
得られたニューラルネットワークモデルにより、完全に微調整されたモデルとパラメータに適応したモデルとのギャップを緩和できることを実証する。
論文 参考訳(メタデータ) (2022-11-16T21:55:05Z) - Benchmarking Learning Efficiency in Deep Reservoir Computing [23.753943709362794]
我々は、機械学習モデルがトレーニングデータからいかに早く学習するかを測定するために、データ効率の指標とともに、ますます困難なタスクのベンチマークを導入する。
我々は、RNN、LSTM、Transformersなどの確立された逐次教師付きモデルの学習速度を、貯水池計算に基づく比較的知られていない代替モデルと比較する。
論文 参考訳(メタデータ) (2022-09-29T08:16:52Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
言語モデルは、テキストコーパスの教師なしトレーニングからさまざまな能力を学ぶことができる。
人間がラベル付きデータを提供するよりも選択肢を選択する方が簡単であり、事前の作業はそのような選好比較から報酬モデルをトレーニングすることで最先端のパフォーマンスを達成した。
能動的学習とリスク-逆強化学習を用いてサンプル効率とロバスト性を向上させる不確実性推定によるこれらの問題に対処することを模索する。
論文 参考訳(メタデータ) (2022-03-14T20:13:21Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - Learning to Fairly Classify the Quality of Wireless Links [0.5352699766206808]
本稿では,高性能な木質リンク品質分類器を提案し,マイノリティクラスを公平に分類する。
選択された不均衡データセット上で,木モデルとMLP非線形モデルと2つの線形モデル,すなわちロジスティック回帰(LR)とSVMを比較した。
本研究は,(1)非線形モデルが一般に線形モデルよりも若干優れていること,2)提案する非線形木ベースモデルが,f1,トレーニング時間,公平性を考慮した最高のパフォーマンストレードオフをもたらすこと,3)正確性のみに基づく単一メトリクス集約評価が貧弱であることを示す。
論文 参考訳(メタデータ) (2021-02-23T12:23:27Z) - It's the Best Only When It Fits You Most: Finding Related Models for
Serving Based on Dynamic Locality Sensitive Hashing [1.581913948762905]
トレーニングデータの作成は、生産や研究のためにディープラーニングモデルをデプロイするライフサイクルにおいて、しばしばボトルネックとなる。
本稿では,対象のデータセットと利用可能なモデルのトレーニングデータセットの類似性に基づいて,関連するモデルを検索してサービスするエンド・ツー・エンドプロセスを提案する。
論文 参考訳(メタデータ) (2020-10-13T22:52:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。