Concept-Attention Whitening for Interpretable Skin Lesion Diagnosis
- URL: http://arxiv.org/abs/2404.05997v2
- Date: Wed, 06 Nov 2024 12:06:03 GMT
- Title: Concept-Attention Whitening for Interpretable Skin Lesion Diagnosis
- Authors: Junlin Hou, Jilan Xu, Hao Chen,
- Abstract summary: We propose a novel Concept-Attention Whitening (CAW) framework for interpretable skin lesion diagnosis.
In the former branch, we train a convolutional neural network (CNN) with an inserted CAW layer to perform skin lesion diagnosis.
In the latter branch, the matrix is calculated under the guidance of the concept attention mask.
- Score: 7.5422729055429745
- License:
- Abstract: The black-box nature of deep learning models has raised concerns about their interpretability for successful deployment in real-world clinical applications. To address the concerns, eXplainable Artificial Intelligence (XAI) aims to provide clear and understandable explanations of the decision-making process. In the medical domain, concepts such as attributes of lesions or abnormalities serve as key evidence for deriving diagnostic results. Existing concept-based models mainly depend on concepts that appear independently and require fine-grained concept annotations such as bounding boxes. However, a medical image usually contains multiple concepts, and the fine-grained concept annotations are difficult to acquire. In this paper, we aim to interpret representations in deep neural networks by aligning the axes of the latent space with known concepts of interest. We propose a novel Concept-Attention Whitening (CAW) framework for interpretable skin lesion diagnosis. CAW is comprised of a disease diagnosis branch and a concept alignment branch. In the former branch, we train a convolutional neural network (CNN) with an inserted CAW layer to perform skin lesion diagnosis. The CAW layer decorrelates features and aligns image features to conceptual meanings via an orthogonal matrix. In the latter branch, the orthogonal matrix is calculated under the guidance of the concept attention mask. We particularly introduce a weakly-supervised concept mask generator that only leverages coarse concept labels for filtering local regions that are relevant to certain concepts, improving the optimization of the orthogonal matrix. Extensive experiments on two public skin lesion diagnosis datasets demonstrated that CAW not only enhanced interpretability but also maintained a state-of-the-art diagnostic performance.
Related papers
- Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - MICA: Towards Explainable Skin Lesion Diagnosis via Multi-Level
Image-Concept Alignment [4.861768967055006]
We propose a multi-modal explainable disease diagnosis framework that meticulously aligns medical images and clinical-related concepts semantically at multiple strata.
Our method, while preserving model interpretability, attains high performance and label efficiency for concept detection and disease diagnosis.
arXiv Detail & Related papers (2024-01-16T17:45:01Z) - Towards Concept-based Interpretability of Skin Lesion Diagnosis using
Vision-Language Models [0.0]
We show that vision-language models can be used to alleviate the dependence on a large number of concept-annotated samples.
In particular, we propose an embedding learning strategy to adapt CLIP to the downstream task of skin lesion classification using concept-based descriptions as textual embeddings.
arXiv Detail & Related papers (2023-11-24T08:31:34Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - Class Attention to Regions of Lesion for Imbalanced Medical Image
Recognition [59.28732531600606]
We propose a framework named textbfClass textbfAttention to textbfREgions of the lesion (CARE) to handle data imbalance issues.
The CARE framework needs bounding boxes to represent the lesion regions of rare diseases.
Results show that the CARE variants with automated bounding box generation are comparable to the original CARE framework.
arXiv Detail & Related papers (2023-07-19T15:19:02Z) - Coherent Concept-based Explanations in Medical Image and Its Application
to Skin Lesion Diagnosis [0.0]
Existing deep learning approaches for melanoma skin lesion diagnosis are deemed black-box models.
We propose an inherently interpretable framework to improve the interpretability of concept-based models.
Our method outperforms existing black-box and concept-based models for skin lesion classification.
arXiv Detail & Related papers (2023-04-10T13:32:04Z) - Interpretable Vertebral Fracture Diagnosis [69.68641439851777]
Black-box neural network models learn clinically relevant features for fracture diagnosis.
This work identifies the concepts networks use for vertebral fracture diagnosis in CT images.
arXiv Detail & Related papers (2022-03-30T13:07:41Z) - Kernelized Concept Erasure [108.65038124096907]
We propose a kernelization of a linear minimax game for concept erasure.
It is possible to prevent specific non-linear adversaries from predicting the concept.
However, the protection does not transfer to different nonlinear adversaries.
arXiv Detail & Related papers (2022-01-28T15:45:13Z) - ExAID: A Multimodal Explanation Framework for Computer-Aided Diagnosis
of Skin Lesions [4.886872847478552]
ExAID (Explainable AI for Dermatology) is a novel framework for biomedical image analysis.
It provides multi-modal concept-based explanations consisting of easy-to-understand textual explanations.
It will be the basis for similar applications in other biomedical imaging fields.
arXiv Detail & Related papers (2022-01-04T17:11:28Z) - Context-Aware Refinement Network Incorporating Structural Connectivity
Prior for Brain Midline Delineation [50.868845400939314]
We propose a context-aware refinement network (CAR-Net) to refine and integrate the feature pyramid representation generated by the UNet.
For keeping the structural connectivity of the brain midline, we introduce a novel connectivity regular loss.
The proposed method requires fewer parameters and outperforms three state-of-the-art methods in terms of four evaluation metrics.
arXiv Detail & Related papers (2020-07-10T14:01:20Z) - On Interpretability of Deep Learning based Skin Lesion Classifiers using
Concept Activation Vectors [6.188009802619095]
We use a well-trained and high performing neural network for classification of three skin tumours, i.e. Melanocytic Naevi, Melanoma and Seborrheic Keratosis.
Human understandable concepts are mapped to RECOD image classification model with the help of Concept Activation Vectors (CAVs)
arXiv Detail & Related papers (2020-05-05T08:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.