Using 3-Objective Evolutionary Algorithms for the Dynamic Chance Constrained Knapsack Problem
- URL: http://arxiv.org/abs/2404.06014v1
- Date: Tue, 9 Apr 2024 04:47:01 GMT
- Title: Using 3-Objective Evolutionary Algorithms for the Dynamic Chance Constrained Knapsack Problem
- Authors: Ishara Hewa Pathiranage, Frank Neumann, Denis Antipov, Aneta Neumann,
- Abstract summary: We explore the use of 3-objective evolutionary algorithms for the chance constrained knapsack problem with dynamic constraints.
We introduce a 3-objective formulation that is able to deal with the dynamic components at the same time and is independent of the confidence level required for the constraint.
Our analysis highlights the advantages of the 3-objective formulation over the 2-objective formulation in addressing the dynamic chance constrained knapsack problem.
- Score: 9.617143859697322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world optimization problems often involve stochastic and dynamic components. Evolutionary algorithms are particularly effective in these scenarios, as they can easily adapt to uncertain and changing environments but often uncertainty and dynamic changes are studied in isolation. In this paper, we explore the use of 3-objective evolutionary algorithms for the chance constrained knapsack problem with dynamic constraints. In our setting, the weights of the items are stochastic and the knapsack's capacity changes over time. We introduce a 3-objective formulation that is able to deal with the stochastic and dynamic components at the same time and is independent of the confidence level required for the constraint. This new approach is then compared to the 2-objective formulation which is limited to a single confidence level. We evaluate the approach using two different multi-objective evolutionary algorithms (MOEAs), namely the global simple evolutionary multi-objective optimizer (GSEMO) and the multi-objective evolutionary algorithm based on decomposition (MOEA/D), across various benchmark scenarios. Our analysis highlights the advantages of the 3-objective formulation over the 2-objective formulation in addressing the dynamic chance constrained knapsack problem.
Related papers
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Multi-Objective Evolutionary Algorithms with Sliding Window Selection for the Dynamic Chance-Constrained Knapsack Problem [2.5690340428649328]
We propose multi-objective evolutionary approaches for the knapsack problem with profits under static and dynamic weight constraints.
We consider a bi-objective formulation that maximises expected profit and minimises variance.
We derive a three-objective formulation by relaxing the weight constraint into an additional objective.
arXiv Detail & Related papers (2024-04-12T03:07:15Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Multiobjective Evolutionary Component Effect on Algorithm behavior [0.04588028371034406]
It is unknown what are the most influential components that lead to performance improvements.
We apply this methodology to a tuned Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D) designed by the iterated racing (irace) configuration package.
We compare the impact of the algorithm components in terms of their Search Trajectory Networks (STNs), the diversity of the population, and the anytime hypervolume values.
arXiv Detail & Related papers (2023-07-31T16:02:56Z) - Three-Way Trade-Off in Multi-Objective Learning: Optimization,
Generalization and Conflict-Avoidance [47.42067405054353]
Multi-objective learning (MOL) problems often arise in emerging machine learning problems.
One of the critical challenges in MOL is the potential conflict among different objectives during the iterative optimization process.
Recent works have developed various dynamic weighting algorithms for MOL such as MGDA and its variants.
arXiv Detail & Related papers (2023-05-31T17:31:56Z) - Evolutionary Multi-Objective Algorithms for the Knapsack Problems with
Stochastic Profits [13.026567958569965]
We consider a version of the knapsack problem with profits to guarantee a certain level of confidence in the profit of an item.
We introduce multi-objective formulations of the profit chance constrained knapsack problem and design three bi-objective fitness evaluation methods.
We show the effectiveness of our approaches on several benchmarks for both settings.
arXiv Detail & Related papers (2023-03-03T03:28:51Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
This paper presents results on multi-objective hyperparameter optimization with uncertainty on the evaluation of Machine Learning algorithms.
We combine the sampling strategy of Tree-structured Parzen Estimators (TPE) with the metamodel obtained after training a Gaussian Process Regression (GPR) with heterogeneous noise.
Experimental results on three analytical test functions and three ML problems show the improvement over multi-objective TPE and GPR.
arXiv Detail & Related papers (2022-09-09T14:58:43Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
We propose to reformulate the result diversification problem as a bi-objective search problem, and solve it by a multi-objective evolutionary algorithm (EA)
We theoretically prove that the GSEMO can achieve the optimal-time approximation ratio, $1/2$.
When the objective function changes dynamically, the GSEMO can maintain this approximation ratio in running time, addressing the open question proposed by Borodin et al.
arXiv Detail & Related papers (2021-10-18T14:00:22Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - Single- and Multi-Objective Evolutionary Algorithms for the Knapsack
Problem with Dynamically Changing Constraints [13.896724650508087]
We investigate single- and multi-objective baseline evolutionary algorithms for the classical knapsack problem.
Our results show that the multi-objective approaches using a population that caters for dynamic changes have a clear advantage on many benchmarks scenarios.
arXiv Detail & Related papers (2020-04-27T03:50:24Z) - Evolutionary Bi-objective Optimization for the Dynamic
Chance-Constrained Knapsack Problem Based on Tail Bound Objectives [12.634782111072585]
We consider the dynamic chance-constrained knapsack problem where the weight of each item is the subject of a capacity constraint.
The objective is to maximize the total profit subject to the probability that total weight exceeds the capacity.
We introduce an additional objective which estimates the minimal capacity bound for a given solution that still meets the chance constraint.
arXiv Detail & Related papers (2020-02-17T04:36:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.