Multi-Objective Evolutionary Algorithms with Sliding Window Selection for the Dynamic Chance-Constrained Knapsack Problem
- URL: http://arxiv.org/abs/2404.08219v1
- Date: Fri, 12 Apr 2024 03:07:15 GMT
- Title: Multi-Objective Evolutionary Algorithms with Sliding Window Selection for the Dynamic Chance-Constrained Knapsack Problem
- Authors: Kokila Kasuni Perera, Aneta Neumann,
- Abstract summary: We propose multi-objective evolutionary approaches for the knapsack problem with profits under static and dynamic weight constraints.
We consider a bi-objective formulation that maximises expected profit and minimises variance.
We derive a three-objective formulation by relaxing the weight constraint into an additional objective.
- Score: 2.5690340428649328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evolutionary algorithms are particularly effective for optimisation problems with dynamic and stochastic components. We propose multi-objective evolutionary approaches for the knapsack problem with stochastic profits under static and dynamic weight constraints. The chance-constrained problem model allows us to effectively capture the stochastic profits and associate a confidence level to the solutions' profits. We consider a bi-objective formulation that maximises expected profit and minimises variance, which allows optimising the problem independent of a specific confidence level on the profit. We derive a three-objective formulation by relaxing the weight constraint into an additional objective. We consider the GSEMO algorithm with standard and a sliding window-based parent selection to evaluate the objective formulations. Moreover, we modify fitness formulations and algorithms for the dynamic problem variant to store some infeasible solutions to cater to future changes. We conduct experimental investigations on both problems using the proposed problem formulations and algorithms. Our results show that three-objective approaches outperform approaches that use bi-objective formulations, and they further improve when GSEMO uses sliding window selection.
Related papers
- Autoformulation of Mathematical Optimization Models Using LLMs [50.030647274271516]
We develop an automated approach to creating optimization models from natural language descriptions for commercial solvers.
We identify the three core challenges of autoformulation: (1) defining the vast, problem-dependent hypothesis space, (2) efficiently searching this space under uncertainty, and (3) evaluating formulation correctness.
arXiv Detail & Related papers (2024-11-03T20:41:38Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Using 3-Objective Evolutionary Algorithms for the Dynamic Chance Constrained Knapsack Problem [9.617143859697322]
We explore the use of 3-objective evolutionary algorithms for the chance constrained knapsack problem with dynamic constraints.
We introduce a 3-objective formulation that is able to deal with the dynamic components at the same time and is independent of the confidence level required for the constraint.
Our analysis highlights the advantages of the 3-objective formulation over the 2-objective formulation in addressing the dynamic chance constrained knapsack problem.
arXiv Detail & Related papers (2024-04-09T04:47:01Z) - Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
We study the Constrained Convex Decision Process (MDP), where the goal is to minimize a convex functional of the visitation measure.
Design algorithms for a constrained convex MDP faces several challenges, including handling the large state space.
arXiv Detail & Related papers (2024-02-16T16:35:18Z) - Evolutionary Multi-Objective Algorithms for the Knapsack Problems with
Stochastic Profits [13.026567958569965]
We consider a version of the knapsack problem with profits to guarantee a certain level of confidence in the profit of an item.
We introduce multi-objective formulations of the profit chance constrained knapsack problem and design three bi-objective fitness evaluation methods.
We show the effectiveness of our approaches on several benchmarks for both settings.
arXiv Detail & Related papers (2023-03-03T03:28:51Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
We propose to reformulate the result diversification problem as a bi-objective search problem, and solve it by a multi-objective evolutionary algorithm (EA)
We theoretically prove that the GSEMO can achieve the optimal-time approximation ratio, $1/2$.
When the objective function changes dynamically, the GSEMO can maintain this approximation ratio in running time, addressing the open question proposed by Borodin et al.
arXiv Detail & Related papers (2021-10-18T14:00:22Z) - Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables [11.310502327308575]
We study the scenario of components that are independent and normally distributed.
We introduce a multi-objective formulation of the problem which trades off the expected cost and its variance.
We prove that this approach can also be used to compute a set of optimal solutions for the chance constrained minimum spanning tree problem.
arXiv Detail & Related papers (2021-09-13T09:24:23Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
We show that common optimization methods lead to poor variational approximations if the problem is moderately large.
Motivated by these findings, we develop a more robust and accurate optimization framework by viewing the underlying algorithm as producing a Markov chain.
arXiv Detail & Related papers (2020-09-01T19:12:11Z) - Adaptive Sampling of Pareto Frontiers with Binary Constraints Using
Regression and Classification [0.0]
We present a novel adaptive optimization algorithm for black-box multi-objective optimization problems with binary constraints.
Our method is based on probabilistic regression and classification models, which act as a surrogate for the optimization goals.
We also present a novel ellipsoid truncation method to speed up the expected hypervolume calculation.
arXiv Detail & Related papers (2020-08-27T09:15:02Z) - Evolutionary Bi-objective Optimization for the Dynamic
Chance-Constrained Knapsack Problem Based on Tail Bound Objectives [12.634782111072585]
We consider the dynamic chance-constrained knapsack problem where the weight of each item is the subject of a capacity constraint.
The objective is to maximize the total profit subject to the probability that total weight exceeds the capacity.
We introduce an additional objective which estimates the minimal capacity bound for a given solution that still meets the chance constraint.
arXiv Detail & Related papers (2020-02-17T04:36:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.