Regularized relativistic corrections for polyelectronic and polyatomic systems with explicitly correlated Gaussians
- URL: http://arxiv.org/abs/2404.06051v2
- Date: Fri, 3 May 2024 13:08:25 GMT
- Title: Regularized relativistic corrections for polyelectronic and polyatomic systems with explicitly correlated Gaussians
- Authors: Balázs Rácsai, Dávid Ferenc, Ádám Margócsy, Edit Mátyus,
- Abstract summary: Drachmann's regularization approach is implemented for floating explicitly correlated Gaussians (fECGs) and molecular systems.
The numerical approach is found to be precise and robust over a range of molecular systems and nuclear configurations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drachmann's regularization approach is implemented for floating explicitly correlated Gaussians (fECGs) and molecular systems. Earlier applications of drachmannized relativistic corrections for molecular systems were hindered due to the unknown analytic matrix elements of $1/r_{ix}1/r_{jy}$-type operators with fECGs. In the present work, one of the $1/r$ factors is approximated by a linear combination of Gaussians, which results in calculable integrals. The numerical approach is found to be precise and robust over a range of molecular systems and nuclear configurations, and thus, it opens the route towards an automated evaluation of high-precision relativistic corrections over potential energy surfaces of polyatomic systems. Furthermore, the newly developed integration approach makes it possible to construct the matrix representation of the square of the electronic Hamiltonian relevant for energy lower-bound as well as time-dependent computations of molecular systems with a flexible and high-precision fECG basis representation.
Related papers
- Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Say NO to Optimization: A Non-Orthogonal Quantum Eigensolver [0.0]
A balanced description of both static and dynamic correlations in electronic systems with nearly degenerate low-lying states presents a challenge for multi-configurational methods on classical computers.
We present here a quantum algorithm utilizing the action of correlating cluster operators to provide high-quality wavefunction ans"atze.
arXiv Detail & Related papers (2022-05-18T16:20:36Z) - A complex Gaussian approach to molecular photoionization [0.0]
We develop and implement a Gaussian approach to calculate partial cross-sections and asymmetry parameters for molecular photoionization.
We show that all the necessary transition integrals become analytical, in both length and velocity gauges, thus facilitating the numerical evaluation of photoionization observables.
Illustrative results, presented for NH3 and H2O within a one-active-electron monocentric model, validate the proposed strategy.
arXiv Detail & Related papers (2021-11-16T17:26:04Z) - Improving the Accuracy of the Variational Quantum Eigensolver for
Molecular Systems by the Explicitly-Correlated Perturbative
[2]-R12-Correction [0.0]
We provide an integration of the universal, perturbative explicitly correlated [2]$_textR12$-correction in the context of the Variational Quantum Eigensolver (VQE)
This approach is able to increase the accuracy of the underlying reference method significantly while requiring no additional quantum resources.
arXiv Detail & Related papers (2021-10-13T15:52:01Z) - Relativistic quantum theory and algorithms: a toolbox for modeling
many-fermion systems in different scenarios [0.0]
We discuss the theoretical methods and relevant computational approaches to calculate the electronic structure of atoms, molecules, and clusters containing heavy elements.
We show the application of our relativistic quantum mechanical framework to the assessment of the elastic differential scattering cross section of electrons impinging on molecular targets.
arXiv Detail & Related papers (2021-10-02T10:20:50Z) - Deformed Explicitly Correlated Gaussians [58.720142291102135]
Deformed correlated Gaussian basis functions are introduced and their matrix elements are calculated.
These basis functions can be used to solve problems with nonspherical potentials.
arXiv Detail & Related papers (2021-08-10T18:23:06Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Circuit quantum electrodynamics (cQED) with modular quasi-lumped models [0.23624125155742057]
Method partitions a quantum device into compact lumped or quasi-distributed cells.
We experimentally validate the method on large-scale, state-of-the-art superconducting quantum processors.
arXiv Detail & Related papers (2021-03-18T16:03:37Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.