論文の概要: Detection of fields of applications in biomedical abstracts with the support of argumentation elements
- arxiv url: http://arxiv.org/abs/2404.06121v1
- Date: Tue, 9 Apr 2024 08:44:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 15:29:31.346241
- Title: Detection of fields of applications in biomedical abstracts with the support of argumentation elements
- Title(参考訳): 議論要素の支持によるバイオメディカル抽象化における応用分野の検出
- Authors: Mariana Neves,
- Abstract要約: 議論的要素は、出版物の特定の部分に焦点を当てることを可能にする。
バイオメディシンにおける特定の課題に対する議論要素の抽出のためのツールの評価を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Focusing on particular facts, instead of the complete text, can potentially improve searching for specific information in the scientific literature. In particular, argumentative elements allow focusing on specific parts of a publication, e.g., the background section or the claims from the authors. We evaluated some tools for the extraction of argumentation elements for a specific task in biomedicine, namely, for detecting the fields of the application in a biomedical publication, e.g, whether it addresses the problem of disease diagnosis or drug development. We performed experiments with the PubMedBERT pre-trained model, which was fine-tuned on a specific corpus for the task. We compared the use of title and abstract to restricting to only some argumentative elements. The top F1 scores ranged from 0.22 to 0.84, depending on the field of application. The best argumentative labels were the ones related the conclusion and background sections of an abstract.
- Abstract(参考訳): 完全なテキストではなく、特定の事実に焦点を当てることによって、科学文献における特定の情報の検索を改善する可能性がある。
特に、議論的要素は出版物の特定の部分、例えば背景部分や著者の主張に焦点を合わせることができる。
バイオメディシンにおける特定のタスクに対する議論要素の抽出,すなわち,疾患診断や薬物開発の問題に対処するかどうかなど,バイオメディカル・パブリッシングの分野を検出するためのいくつかのツールを評価した。
タスクの特定のコーパスを微調整したPubMedBERT事前学習モデルを用いて実験を行った。
タイトルと抽象語の使用を、いくつかの議論的要素に限定するのと比較した。
トップF1スコアは適用分野によって0.22から0.84まで変化した。
最良の議論ラベルは、抽象の結論と背景部分に関連するものである。
関連論文リスト
- BiomedParse: a biomedical foundation model for image parsing of everything everywhere all at once [58.41069132627823]
全体像解析は、セグメンテーション、検出、関連するオブジェクトの認識などのサブタスクを含む。
そこで本研究では,9つの画像モダリティにまたがる82種類のオブジェクトの分割,検出,認識を共同で行うことができる,画像解析のためのバイオメディカル基礎モデルであるBiomedParseを提案する。
共同学習により、個々のタスクの精度を向上し、テキストプロンプトを通じてノイズの多い画像中のすべての関連オブジェクトを分割するといった新しいアプリケーションを可能にする。
論文 参考訳(メタデータ) (2024-05-21T17:54:06Z) - A survey of recent methods for addressing AI fairness and bias in
biomedicine [48.46929081146017]
人工知能システムは、人種や性別に基づくような社会的不平等を永続するか、偏見を示すことができる。
バイオメディカル自然言語処理 (NLP) やコンピュータビジョン (CV) の分野での様々な脱バイアス法に関する最近の論文を調査した。
我々は,2018年1月から2023年12月にかけて,複数のキーワードの組み合わせを用いて,PubMed,ACMデジタルライブラリ,IEEE Xploreに関する文献検索を行った。
バイオメディシンに応用可能な一般領域からの他の方法について検討し, バイアスに対処し, 公平性を向上する方法について検討した。
論文 参考訳(メタデータ) (2024-02-13T06:38:46Z) - Improving Biomedical Abstractive Summarisation with Knowledge
Aggregation from Citation Papers [24.481854035628434]
既存の言語モデルは、バイオメディカルの専門家が生み出したものと同等の技術的要約を生成するのに苦労している。
本稿では,引用論文からドメイン固有の知識を統合する,新たな注目に基づく引用集約モデルを提案する。
我々のモデルは最先端のアプローチより優れており、抽象的なバイオメディカルテキスト要約の大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-10-24T09:56:46Z) - Detecting automatically the layout of clinical documents to enhance the
performances of downstream natural language processing [53.797797404164946]
我々は,臨床用PDF文書を処理し,臨床用テキストのみを抽出するアルゴリズムを設計した。
このアルゴリズムは、PDFを使った最初のテキスト抽出と、続いてボディテキスト、左書き、フッタなどのカテゴリに分類される。
それぞれのセクションのテキストから興味ある医学的概念を抽出し,医療的パフォーマンスを評価した。
論文 参考訳(メタデータ) (2023-05-23T08:38:33Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
本論文は,生物医学領域の概念とそれらの関連性を記述するオントロジーであるEBOCAと,それらの関連性を支持するエビデンスを提案する。
DISNETのサブセットから得られるテストデータとテキストからの自動アソシエーション抽出が変換され、実際のシナリオで使用できる知識グラフが作成されるようになった。
論文 参考訳(メタデータ) (2022-08-01T18:47:03Z) - An Empirical Study on Relation Extraction in the Biomedical Domain [0.0]
文レベルの関係抽出と文書レベルの関係抽出について検討し、いくつかのベンチマークデータセット上で最先端の手法を実行する。
以上の結果から,(1)現行の文書レベルの関係抽出手法は高い一般化能力を有し,(2)既存の手法では,バイオメディシンのモデル微調整に大量のラベル付きデータを必要とすることがわかった。
論文 参考訳(メタデータ) (2021-12-11T03:36:38Z) - Clinical Named Entity Recognition using Contextualized Token
Representations [49.036805795072645]
本稿では,各単語の意味的意味をより正確に把握するために,文脈型単語埋め込み手法を提案する。
言語モデル(C-ELMo)とC-Flair(C-Flair)の2つの深い文脈型言語モデル(C-ELMo)を事前訓練する。
明示的な実験により、静的単語埋め込みとドメインジェネリック言語モデルの両方と比較して、我々のモデルは劇的に改善されている。
論文 参考訳(メタデータ) (2021-06-23T18:12:58Z) - Impact of detecting clinical trial elements in exploration of COVID-19
literature [29.027162080682643]
本稿では, 標準検索エンジンによる検索結果と臨床関連概念を用いたフィルタリング結果と, その関連性について比較する。
関係性の概念選択は、元の検索したコレクションを、未判断の文書の割合を減少させる方法でフィルタリングする。
論文 参考訳(メタデータ) (2021-05-25T23:41:24Z) - Low Resource Recognition and Linking of Biomedical Concepts from a Large
Ontology [30.324906836652367]
生物医学論文のデータベースで最も有名なPubMedは、これらのアノテーションを追加するために人間のキュレーターに依存しています。
提案手法は,従来の認識/リンクとセマンティックインデックスに基づく評価において,UMLSの新たな最先端結果を実現する。
論文 参考訳(メタデータ) (2021-01-26T06:41:12Z) - Text Mining to Identify and Extract Novel Disease Treatments From
Unstructured Datasets [56.38623317907416]
Google Cloudを使って、NPRラジオ番組のポッドキャストのエピソードを書き起こします。
次に、テキストを体系的に前処理するためのパイプラインを構築します。
我々のモデルは、Omeprazoleが心臓熱傷の治療に役立てることに成功しました。
論文 参考訳(メタデータ) (2020-10-22T19:52:49Z) - Segmenting Scientific Abstracts into Discourse Categories: A Deep
Learning-Based Approach for Sparse Labeled Data [8.635930195821265]
我々は、PubMedから構造化された抽象概念に基づいて深層ニューラルネットワークをトレーニングし、それを手書きのコンピュータサイエンス論文の小さなコーパスで微調整する。
本手法は,データが疎結合である抽象文の自動セグメンテーションにおいて,有望な解であると考えられる。
論文 参考訳(メタデータ) (2020-05-11T20:21:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。