論文の概要: Differential Privacy for Anomaly Detection: Analyzing the Trade-off Between Privacy and Explainability
- arxiv url: http://arxiv.org/abs/2404.06144v1
- Date: Tue, 9 Apr 2024 09:09:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 15:19:37.096460
- Title: Differential Privacy for Anomaly Detection: Analyzing the Trade-off Between Privacy and Explainability
- Title(参考訳): 異常検出のための差分プライバシー:プライバシーと説明可能性のトレードオフの分析
- Authors: Fatima Ezzeddine, Mirna Saad, Omran Ayoub, Davide Andreoletti, Martin Gjoreski, Ihab Sbeity, Marc Langheinrich, Silvia Giordano,
- Abstract要約: 我々は、SHAP(SHapley Additive ExPlanations)とDP(差分プライバシー)による説明可能なAI(XAI)の適用のトレードオフを利用する。
以上の結果から,DPによるプライバシの実施が検出精度と説明可能性に重大な影響があることが示唆された。
さらに,説明文の視覚的解釈は,ADアルゴリズムの選択にも影響されていることを示す。
- 参考スコア(独自算出の注目度): 4.844901225743574
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Anomaly detection (AD), also referred to as outlier detection, is a statistical process aimed at identifying observations within a dataset that significantly deviate from the expected pattern of the majority of the data. Such a process finds wide application in various fields, such as finance and healthcare. While the primary objective of AD is to yield high detection accuracy, the requirements of explainability and privacy are also paramount. The first ensures the transparency of the AD process, while the second guarantees that no sensitive information is leaked to untrusted parties. In this work, we exploit the trade-off of applying Explainable AI (XAI) through SHapley Additive exPlanations (SHAP) and differential privacy (DP). We perform AD with different models and on various datasets, and we thoroughly evaluate the cost of privacy in terms of decreased accuracy and explainability. Our results show that the enforcement of privacy through DP has a significant impact on detection accuracy and explainability, which depends on both the dataset and the considered AD model. We further show that the visual interpretation of explanations is also influenced by the choice of the AD algorithm.
- Abstract(参考訳): 異常検出(Anomaly Detection, AD)は、データの大部分の予測パターンから著しく逸脱するデータセット内の観測を識別することを目的とした統計処理である。
このようなプロセスは、金融や医療など、さまざまな分野で広く適用されている。
ADの主な目的は高い検出精度を得ることであるが、説明可能性とプライバシーの要件も最重要である。
第1はADプロセスの透明性を保証し、第2は機密情報が信頼できない当事者にリークされることを保証します。
本研究では、SHAP(SHapley Additive ExPlanations)とDP(差分プライバシー)による説明可能なAI(XAI)の適用のトレードオフを利用する。
我々は、異なるモデルと様々なデータセットでADを行い、精度と説明可能性の低下の観点から、プライバシーのコストを徹底的に評価する。
以上の結果から,DPによるプライバシの実施は,データセットと検討されたADモデルの両方に依存する検出精度と説明可能性に大きな影響を及ぼすことが明らかとなった。
さらに,説明文の視覚的解釈は,ADアルゴリズムの選択にも影響されていることを示す。
関連論文リスト
- What If the Input is Expanded in OOD Detection? [77.37433624869857]
Out-of-distriion (OOD) 検出は未知のクラスからのOOD入力を特定することを目的としている。
In-distriion(ID)データと区別するために,様々なスコアリング関数を提案する。
入力空間に異なる共通の汚職を用いるという、新しい視点を導入する。
論文 参考訳(メタデータ) (2024-10-24T06:47:28Z) - DePrompt: Desensitization and Evaluation of Personal Identifiable Information in Large Language Model Prompts [11.883785681042593]
DePromptは、プロンプトのための脱感作保護および有効性評価フレームワークである。
我々は、コンテキスト属性を統合し、プライバシタイプを定義し、高精度なPIIエンティティ識別を実現する。
私たちのフレームワークはプロンプトに適応可能で、テキストのユーザビリティに依存したシナリオに拡張できます。
論文 参考訳(メタデータ) (2024-08-16T02:38:25Z) - Privacy Constrained Fairness Estimation for Decision Trees [2.9906966931843093]
任意のAIモデルの公平さを測定するには、データセット内の個人の敏感な属性が必要である。
プライバシ・アウェア・フェアネス・オブ・ルール(PAFER)と呼ばれる新しい手法を提案する。
提案手法は,ラプラシアン機構を用いて,データセット内の個人のプライバシーを高い確度で保証しつつ,低い誤差でSPを推定できることを示す。
論文 参考訳(メタデータ) (2023-12-13T14:54:48Z) - TeD-SPAD: Temporal Distinctiveness for Self-supervised
Privacy-preservation for video Anomaly Detection [59.04634695294402]
人間の監視のないビデオ異常検出(VAD)は複雑なコンピュータビジョンタスクである。
VADのプライバシー漏洩により、モデルは人々の個人情報に関連する不必要なバイアスを拾い上げ、増幅することができる。
本稿では,視覚的プライベート情報を自己管理的に破壊する,プライバシーに配慮したビデオ異常検出フレームワークTeD-SPADを提案する。
論文 参考訳(メタデータ) (2023-08-21T22:42:55Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
推定検証リリース(EVR)と呼ばれる新しい差分プライバシーパラダイムを提案する。
EVRパラダイムは、まずメカニズムのプライバシパラメータを推定し、その保証を満たすかどうかを確認し、最後にクエリ出力を解放する。
我々の実証的な評価は、新たに提案されたEVRパラダイムが、プライバシ保護機械学習のユーティリティプライバシトレードオフを改善することを示している。
論文 参考訳(メタデータ) (2023-04-17T00:38:01Z) - Improved Generalization Guarantees in Restricted Data Models [16.193776814471768]
差分プライバシーは、適応的、または探索的、データ分析による妥当性の脅威から保護されることが知られている。
この仮定では、データの異なる部分におけるプライバシー予算の「再利用」が可能であり、オーバーフィッティングのリスクを増大させることなく、精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2022-07-20T16:04:12Z) - Data-Efficient and Interpretable Tabular Anomaly Detection [54.15249463477813]
本稿では,ホワイトボックスモデルクラスである一般化付加モデルを適用し,異常を検出する新しいフレームワークを提案する。
さらに、提案フレームワークであるDIADは、ラベル付きデータの少量を組み込んで、半教師付き設定における異常検出性能をさらに向上させることができる。
論文 参考訳(メタデータ) (2022-03-03T22:02:56Z) - Towards a Data Privacy-Predictive Performance Trade-off [2.580765958706854]
分類タスクにおけるデータプライバシと予測性能のトレードオフの存在を評価する。
従来の文献とは異なり、プライバシーのレベルが高ければ高いほど、予測性能が向上することを確認した。
論文 参考訳(メタデータ) (2022-01-13T21:48:51Z) - Decision Making with Differential Privacy under a Fairness Lens [65.16089054531395]
アメリカ国勢調査局は、多くの重要な意思決定プロセスの入力として使用される個人のグループに関するデータセットと統計を公表している。
プライバシと機密性要件に従うために、これらの機関は、しばしば、プライバシを保存するバージョンのデータを公開する必要がある。
本稿では,差分的プライベートデータセットのリリースについて検討し,公平性の観点から重要な資源配分タスクに与える影響を考察する。
論文 参考訳(メタデータ) (2021-05-16T21:04:19Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z) - Data-driven Regularized Inference Privacy [33.71757542373714]
データを衛生化するためのデータ駆動推論プライバシ保護フレームワークを提案する。
我々は変分法に基づく推論プライバシ・フレームワークを開発する。
プライバシー基準を推定するための実証的手法を提案する。
論文 参考訳(メタデータ) (2020-10-10T08:42:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。