論文の概要: Enhanced Radar Perception via Multi-Task Learning: Towards Refined Data for Sensor Fusion Applications
- arxiv url: http://arxiv.org/abs/2404.06165v1
- Date: Tue, 9 Apr 2024 09:42:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 15:19:37.074731
- Title: Enhanced Radar Perception via Multi-Task Learning: Towards Refined Data for Sensor Fusion Applications
- Title(参考訳): マルチタスク学習によるレーダー知覚の強化:センサフュージョンへの応用に向けて
- Authors: Huawei Sun, Hao Feng, Gianfranco Mauro, Julius Ott, Georg Stettinger, Lorenzo Servadei, Robert Wille,
- Abstract要約: 本研究は,3次元物体に関連付けられたレーダー点の高さを推定するための学習に基づくアプローチを導入する。
平均レーダー絶対高さ誤差は最先端高度法と比較して1.69mから0.25mに減少する。
- 参考スコア(独自算出の注目度): 6.237187007098249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radar and camera fusion yields robustness in perception tasks by leveraging the strength of both sensors. The typical extracted radar point cloud is 2D without height information due to insufficient antennas along the elevation axis, which challenges the network performance. This work introduces a learning-based approach to infer the height of radar points associated with 3D objects. A novel robust regression loss is introduced to address the sparse target challenge. In addition, a multi-task training strategy is employed, emphasizing important features. The average radar absolute height error decreases from 1.69 to 0.25 meters compared to the state-of-the-art height extension method. The estimated target height values are used to preprocess and enrich radar data for downstream perception tasks. Integrating this refined radar information further enhances the performance of existing radar camera fusion models for object detection and depth estimation tasks.
- Abstract(参考訳): レーダーとカメラの融合は、両方のセンサーの強度を活用することにより、知覚タスクにおいて堅牢性をもたらす。
典型的な抽出レーダーポイント雲は、高度軸に沿ったアンテナが不十分なため、高さ情報のない2Dであり、ネットワーク性能に挑戦する。
本研究は,3次元物体に関連付けられたレーダー点の高さを推定するための学習に基づくアプローチを導入する。
スパース目標問題に対処するために、新しい堅牢な回帰損失を導入する。
さらに、重要な特徴を強調するマルチタスクトレーニング戦略が採用されている。
平均レーダー絶対高さ誤差は、最先端の高度拡張法と比較して1.69mから0.25mに減少する。
推定目標高さ値は、下流認識タスクのためのレーダデータを前処理し、濃縮するために使用される。
この改良されたレーダー情報の統合により、既存のレーダーカメラ融合モデルの性能が向上し、物体検出および深度推定タスクが実現される。
関連論文リスト
- LEROjD: Lidar Extended Radar-Only Object Detection [0.22870279047711525]
3+1Dイメージングレーダーセンサーは、ライダーに代わるコスト効率が高く、堅牢な代替手段を提供する。
ライダーは推論中に使用するべきではないが、レーダーのみの物体検出器の訓練を支援することができる。
我々は、ライダーからレーダードメインとレーダー専用物体検出器に知識を伝達する2つの戦略を探求する。
論文 参考訳(メタデータ) (2024-09-09T12:43:25Z) - GET-UP: GEomeTric-aware Depth Estimation with Radar Points UPsampling [7.90238039959534]
既存のアルゴリズムは3Dポイントを画像面に投影してレーダデータを処理し、画素レベルの特徴抽出を行う。
レーダデータから2次元情報と3次元情報を交換・集約するために,注目度の高いグラフニューラルネットワーク(GNN)を利用するGET-UPを提案する。
提案したGET-UPをnuScenesデータセット上でベンチマークし,従来最高のパフォーマンスモデルよりも15.3%,14.7%改善した。
論文 参考訳(メタデータ) (2024-09-02T14:15:09Z) - RadarPillars: Efficient Object Detection from 4D Radar Point Clouds [42.9356088038035]
本稿では,柱型物体検出ネットワークRadarPillarsを提案する。
放射速度データを分解することにより、RadarPillarsは、View-of-Delftデータセットの最先端検出結果を大幅に上回る。
これはパラメータ数を大幅に削減し、既存のメソッドを効率面で上回り、エッジデバイス上でのリアルタイムパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-08-09T12:13:38Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
この課題に対処し、動的オブジェクトの3D検出を改善するために、双方向LiDAR-Radar融合フレームワーク、Bi-LRFusionを導入する。
我々はnuScenesとORRデータセットに関する広範な実験を行い、我々のBi-LRFusionが動的オブジェクトを検出するための最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-06-02T10:57:41Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
本稿では,レーダ検出を点雲に展開する深層学習手法を提案する。
このアルゴリズムは、距離依存クラスタリングと入力点雲の事前処理により、レーダ固有の特性に適応する。
我々のネットワークは、レーダポイント雲のセマンティックセグメンテーションのタスクにおいて、PointNet++に基づく最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-05-22T07:09:35Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
レーダー中心のデータセットは、レーダー知覚のためのディープラーニング技術の開発にはあまり注目されていない。
本稿では,視覚深層学習における最先端技術を活用したトランスフォーマーモデルRadarFormerを提案する。
また、チャネルチャープ時マージモジュールを導入し、精度を損なうことなく、モデルのサイズと複雑さを10倍以上に削減する。
論文 参考訳(メタデータ) (2023-04-17T17:07:35Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
本稿では,レーダセンサ間の相互干渉問題に対処するために,複合価値畳み込みニューラルネットワーク(CVCNN)を提案する。
CVCNNはデータ効率を高め、ネットワークトレーニングを高速化し、干渉除去時の位相情報の保存を大幅に改善する。
論文 参考訳(メタデータ) (2021-04-29T10:06:29Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
本稿では,レーダセンサ情報と広範に使用されているライダーと高精細度(HD)マップを用いた新しい終端軌道予測手法LiRaNetを提案する。
自動車レーダーは、リッチで補完的な情報を提供し、より長い距離の車両検出と即時速度測定を可能にします。
論文 参考訳(メタデータ) (2020-10-02T00:13:00Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。