scCDCG: Efficient Deep Structural Clustering for single-cell RNA-seq via Deep Cut-informed Graph Embedding
- URL: http://arxiv.org/abs/2404.06167v1
- Date: Tue, 9 Apr 2024 09:46:17 GMT
- Title: scCDCG: Efficient Deep Structural Clustering for single-cell RNA-seq via Deep Cut-informed Graph Embedding
- Authors: Ping Xu, Zhiyuan Ning, Meng Xiao, Guihai Feng, Xin Li, Yuanchun Zhou, Pengfei Wang,
- Abstract summary: scCDCG (single-cell RNA-seq Clustering via Deep Cut-informed Graph) is a novel framework designed for efficient and accurate clustering of scRNA-seq data.
scCDCG comprises three main components: (i) A graph embedding module utilizing deep cut-informed techniques, which effectively captures intercellular high-order structural information.
(ii) A self-supervised learning module guided by optimal transport, tailored to accommodate the unique complexities of scRNA-seq data.
- Score: 12.996418312603284
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Single-cell RNA sequencing (scRNA-seq) is essential for unraveling cellular heterogeneity and diversity, offering invaluable insights for bioinformatics advancements. Despite its potential, traditional clustering methods in scRNA-seq data analysis often neglect the structural information embedded in gene expression profiles, crucial for understanding cellular correlations and dependencies. Existing strategies, including graph neural networks, face challenges in handling the inefficiency due to scRNA-seq data's intrinsic high-dimension and high-sparsity. Addressing these limitations, we introduce scCDCG (single-cell RNA-seq Clustering via Deep Cut-informed Graph), a novel framework designed for efficient and accurate clustering of scRNA-seq data that simultaneously utilizes intercellular high-order structural information. scCDCG comprises three main components: (i) A graph embedding module utilizing deep cut-informed techniques, which effectively captures intercellular high-order structural information, overcoming the over-smoothing and inefficiency issues prevalent in prior graph neural network methods. (ii) A self-supervised learning module guided by optimal transport, tailored to accommodate the unique complexities of scRNA-seq data, specifically its high-dimension and high-sparsity. (iii) An autoencoder-based feature learning module that simplifies model complexity through effective dimension reduction and feature extraction. Our extensive experiments on 6 datasets demonstrate scCDCG's superior performance and efficiency compared to 7 established models, underscoring scCDCG's potential as a transformative tool in scRNA-seq data analysis. Our code is available at: https://github.com/XPgogogo/scCDCG.
Related papers
- Dumpling GNN: Hybrid GNN Enables Better ADC Payload Activity Prediction Based on Chemical Structure [53.76752789814785]
DumplingGNN is a hybrid Graph Neural Network architecture specifically designed for predicting ADC payload activity based on chemical structure.
We evaluate it on a comprehensive ADC payload dataset focusing on DNA Topoisomerase I inhibitors.
It demonstrates exceptional accuracy (91.48%), sensitivity (95.08%), and specificity (97.54%) on our specialized ADC payload dataset.
arXiv Detail & Related papers (2024-09-23T17:11:04Z) - Single-cell Curriculum Learning-based Deep Graph Embedding Clustering [21.328135630638343]
We propose a single-cell curriculum learning-based deep graph embedding clustering (scCLG)
We first propose a Chebyshev graph convolutional autoencoder with multi-decoder (ChebAE) that combines three optimization objectives corresponding to three decoders.
We employ a selective training strategy to train GNN based on the features and entropy of nodes and prune the difficult nodes based on the difficulty scores to keep the high-quality graph.
arXiv Detail & Related papers (2024-08-20T03:20:13Z) - scASDC: Attention Enhanced Structural Deep Clustering for Single-cell RNA-seq Data [5.234149080137045]
High sparsity and complex noise patterns inherent in scRNA-seq data present significant challenges for traditional clustering methods.
We propose a deep clustering method, Attention-Enhanced Structural Deep Embedding Graph Clustering (scASDC)
scASDC integrates multiple advanced modules to improve clustering accuracy and robustness.
arXiv Detail & Related papers (2024-08-09T09:10:36Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
We introduce the first comprehensive RNA benchmark BEACON (textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models).
First, BEACON comprises 13 distinct tasks derived from extensive previous work covering structural analysis, functional studies, and engineering applications.
Second, we examine a range of models, including traditional approaches like CNNs, as well as advanced RNA foundation models based on language models, offering valuable insights into the task-specific performances of these models.
Third, we investigate the vital RNA language model components
arXiv Detail & Related papers (2024-06-14T19:39:19Z) - scBiGNN: Bilevel Graph Representation Learning for Cell Type
Classification from Single-cell RNA Sequencing Data [62.87454293046843]
Graph neural networks (GNNs) have been widely used for automatic cell type classification.
scBiGNN comprises two GNN modules to identify cell types.
scBiGNN outperforms a variety of existing methods for cell type classification from scRNA-seq data.
arXiv Detail & Related papers (2023-12-16T03:54:26Z) - scHyena: Foundation Model for Full-Length Single-Cell RNA-Seq Analysis
in Brain [46.39828178736219]
We introduce scHyena, a foundation model designed to address these challenges and enhance the accuracy of scRNA-seq analysis in the brain.
scHyena is equipped with a linear adaptor layer, the positional encoding via gene-embedding, and a bidirectional Hyena operator.
This enables us to process full-length scRNA-seq data without losing any information from the raw data.
arXiv Detail & Related papers (2023-10-04T10:30:08Z) - Analyzing scRNA-seq data by CCP-assisted UMAP and t-SNE [0.0]
Correlated clustering and projection (CCP) was introduced as an effective method for preprocessing scRNA-seq data.
CCP is a data-domain approach that does not require matrix diagonalization.
By using eight publicly available datasets, we have found that CCP significantly improves UMAP and t-SNE visualization.
arXiv Detail & Related papers (2023-06-23T19:15:43Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
This study aims to systematically construct a data-driven RNA design pipeline.
We crafted a benchmark dataset and designed a comprehensive structural modeling approach to represent the complex RNA tertiary structure.
We incorporated extracted secondary structures with base pairs as prior knowledge to facilitate the RNA design process.
arXiv Detail & Related papers (2023-01-25T17:19:49Z) - Application of Deep Learning on Single-Cell RNA-sequencing Data
Analysis: A Review [17.976898403296275]
Single-cell RNA-sequencing (scRNA-seq) has become a routinely used technique to quantify the gene expression profile of thousands of single cells simultaneously.
Deep learning, a recent advance of artificial intelligence, has also emerged as a promising tool for scRNA-seq data analysis.
arXiv Detail & Related papers (2022-10-11T17:07:22Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.