Dumpling GNN: Hybrid GNN Enables Better ADC Payload Activity Prediction Based on Chemical Structure
- URL: http://arxiv.org/abs/2410.05278v1
- Date: Mon, 23 Sep 2024 17:11:04 GMT
- Title: Dumpling GNN: Hybrid GNN Enables Better ADC Payload Activity Prediction Based on Chemical Structure
- Authors: Shengjie Xu, Lingxi Xie,
- Abstract summary: DumplingGNN is a hybrid Graph Neural Network architecture specifically designed for predicting ADC payload activity based on chemical structure.
We evaluate it on a comprehensive ADC payload dataset focusing on DNA Topoisomerase I inhibitors.
It demonstrates exceptional accuracy (91.48%), sensitivity (95.08%), and specificity (97.54%) on our specialized ADC payload dataset.
- Score: 53.76752789814785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Antibody-drug conjugates (ADCs) have emerged as a promising class of targeted cancer therapeutics, but the design and optimization of their cytotoxic payloads remain challenging. This study introduces DumplingGNN, a novel hybrid Graph Neural Network architecture specifically designed for predicting ADC payload activity based on chemical structure. By integrating Message Passing Neural Networks (MPNN), Graph Attention Networks (GAT), and GraphSAGE layers, DumplingGNN effectively captures multi-scale molecular features and leverages both 2D topological and 3D structural information. We evaluate DumplingGNN on a comprehensive ADC payload dataset focusing on DNA Topoisomerase I inhibitors, as well as on multiple public benchmarks from MoleculeNet. DumplingGNN achieves state-of-the-art performance across several datasets, including BBBP (96.4\% ROC-AUC), ToxCast (78.2\% ROC-AUC), and PCBA (88.87\% ROC-AUC). On our specialized ADC payload dataset, it demonstrates exceptional accuracy (91.48\%), sensitivity (95.08\%), and specificity (97.54\%). Ablation studies confirm the synergistic effects of the hybrid architecture and the critical role of 3D structural information in enhancing predictive accuracy. The model's strong interpretability, enabled by attention mechanisms, provides valuable insights into structure-activity relationships. DumplingGNN represents a significant advancement in molecular property prediction, with particular promise for accelerating the design and optimization of ADC payloads in targeted cancer therapy development.
Related papers
- GramSeq-DTA: A grammar-based drug-target affinity prediction approach fusing gene expression information [1.2289361708127877]
We propose GramSeq-DTA, which integrates chemical perturbation information with the structural information of drugs and targets.
Our approach outperforms the current state-of-the-art DTA prediction models when validated on widely used DTA datasets.
arXiv Detail & Related papers (2024-11-03T03:17:09Z) - YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention [9.018408514318631]
Traditional methods often miss complex molecular structures, leading to inaccuracies.
We introduce the YZS-Model, a deep learning framework integrating Graph Convolutional Networks (GCN), Transformer architectures, and Long Short-Term Memory (LSTM) networks.
YZS-Model achieved an $R2$ of 0.59 and an RMSE of 0.57, outperforming benchmark models.
arXiv Detail & Related papers (2024-06-27T12:40:29Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
Heterogeneous Graph Neural Networks (HGNNs) are increasingly recognized for their performance in areas like the web and e-commerce.
This paper introduces HGAttack, the first dedicated gray box evasion attack method for heterogeneous graphs.
arXiv Detail & Related papers (2024-01-18T12:47:13Z) - Accelerating Molecular Graph Neural Networks via Knowledge Distillation [1.9116784879310031]
Recent advances in graph neural networks (GNNs) have enabled more comprehensive modeling of molecules and molecular systems.
As the field has been progressing to bigger and more complex architectures, state-of-the-art GNNs have become largely prohibitive for many large-scale applications.
We devise KD strategies that facilitate the distillation of hidden representations in directional and equivariant GNNs, and evaluate their performance on the regression task of energy and force prediction.
arXiv Detail & Related papers (2023-06-26T16:24:31Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
We propose a well-designed hierarchical informative graph neural networks framework (termed HiGNN) for predicting molecular property.
Experiments demonstrate that HiGNN achieves state-of-the-art predictive performance on many challenging drug discovery-associated benchmark datasets.
arXiv Detail & Related papers (2022-08-30T05:16:15Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data.
There has been a dearth of comprehensive studies examining the impact of intrinsic structures within spiking computations.
This work delves deep into the intrinsic structures of SNNs, by elucidating their influence on the expressivity of SNNs.
arXiv Detail & Related papers (2022-06-21T09:42:30Z) - Protein 3D structure-based neural networks highly improve the accuracy
in compound-protein binding affinity prediction [7.059949221160259]
We develop Fast Evolutional Attention and Thoroughgoing-graph Neural Networks (FeatNN) to facilitate the application of protein 3D structure information for predicting compound-protein binding affinities (CPAs)
FeatNN considerably outperforms various state-of-the-art baselines in CPA prediction with the Pearson value elevated by about 35.7%.
arXiv Detail & Related papers (2022-03-30T00:44:15Z) - Distance-aware Molecule Graph Attention Network for Drug-Target Binding
Affinity Prediction [54.93890176891602]
We propose a diStance-aware Molecule graph Attention Network (S-MAN) tailored to drug-target binding affinity prediction.
As a dedicated solution, we first propose a position encoding mechanism to integrate the topological structure and spatial position information into the constructed pocket-ligand graph.
We also propose a novel edge-node hierarchical attentive aggregation structure which has edge-level aggregation and node-level aggregation.
arXiv Detail & Related papers (2020-12-17T17:44:01Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.