Clue-Instruct: Text-Based Clue Generation for Educational Crossword Puzzles
- URL: http://arxiv.org/abs/2404.06186v1
- Date: Tue, 9 Apr 2024 10:12:34 GMT
- Title: Clue-Instruct: Text-Based Clue Generation for Educational Crossword Puzzles
- Authors: Andrea Zugarini, Kamyar Zeinalipour, Surya Sai Kadali, Marco Maggini, Marco Gori, Leonardo Rigutini,
- Abstract summary: We propose a methodology to build educational clue generation datasets that can be used to instruct Large Language Models.
By gathering from Wikipedia pages informative content associated with relevant keywords, we use Large Language Models to automatically generate pedagogical clues.
We used clue-instruct to instruct different LLMs to generate educational clues from a given input content and keyword.
- Score: 10.375451846093327
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Crossword puzzles are popular linguistic games often used as tools to engage students in learning. Educational crosswords are characterized by less cryptic and more factual clues that distinguish them from traditional crossword puzzles. Despite there exist several publicly available clue-answer pair databases for traditional crosswords, educational clue-answer pairs datasets are missing. In this article, we propose a methodology to build educational clue generation datasets that can be used to instruct Large Language Models (LLMs). By gathering from Wikipedia pages informative content associated with relevant keywords, we use Large Language Models to automatically generate pedagogical clues related to the given input keyword and its context. With such an approach, we created clue-instruct, a dataset containing 44,075 unique examples with text-keyword pairs associated with three distinct crossword clues. We used clue-instruct to instruct different LLMs to generate educational clues from a given input content and keyword. Both human and automatic evaluations confirmed the quality of the generated clues, thus validating the effectiveness of our approach.
Related papers
- Harnessing LLMs for Educational Content-Driven Italian Crossword Generation [10.137657521054356]
We unveil a novel tool for generating Italian crossword puzzles from text.
We use advanced language models such as GPT-4o, Mistral-7B-Instruct-v0.3, and Llama3-8b-Instruct.
This cutting-edge generator makes use of the comprehensive Italian-Clue-Instruct dataset.
arXiv Detail & Related papers (2024-11-25T21:13:25Z) - Italian Crossword Generator: Enhancing Education through Interactive
Word Puzzles [9.84767617576152]
We develop a comprehensive system for generating and verifying crossword clues.
A dataset of clue-answer pairs was compiled to fine-tune the models.
For generating crossword clues from a given text, Zero/Few-shot learning techniques were used.
arXiv Detail & Related papers (2023-11-27T11:17:29Z) - Language Models As Semantic Indexers [78.83425357657026]
We introduce LMIndexer, a self-supervised framework to learn semantic IDs with a generative language model.
We show the high quality of the learned IDs and demonstrate their effectiveness on three tasks including recommendation, product search, and document retrieval.
arXiv Detail & Related papers (2023-10-11T18:56:15Z) - Storyfier: Exploring Vocabulary Learning Support with Text Generation
Models [52.58844741797822]
We develop Storyfier to provide a coherent context for any target words of learners' interests.
learners generally favor the generated stories for connecting target words and writing assistance for easing their learning workload.
In read-cloze-write learning sessions, participants using Storyfier perform worse in recalling and using target words than learning with a baseline tool without our AI features.
arXiv Detail & Related papers (2023-08-07T18:25:00Z) - Multiview Identifiers Enhanced Generative Retrieval [78.38443356800848]
generative retrieval generates identifier strings of passages as the retrieval target.
We propose a new type of identifier, synthetic identifiers, that are generated based on the content of a passage.
Our proposed approach performs the best in generative retrieval, demonstrating its effectiveness and robustness.
arXiv Detail & Related papers (2023-05-26T06:50:21Z) - Disambiguation of Company names via Deep Recurrent Networks [101.90357454833845]
We propose a Siamese LSTM Network approach to extract -- via supervised learning -- an embedding of company name strings.
We analyse how an Active Learning approach to prioritise the samples to be labelled leads to a more efficient overall learning pipeline.
arXiv Detail & Related papers (2023-03-07T15:07:57Z) - Down and Across: Introducing Crossword-Solving as a New NLP Benchmark [11.194615436370507]
We release the specification of a corpus of crossword puzzles collected from the New York Times daily crossword spanning 25 years.
These puzzles include a diverse set of clues: historic, factual, word meaning, synonyms/antonyms, fill-in-the-blank, abbreviations, prefixes/suffixes, wordplay, and cross-lingual.
arXiv Detail & Related papers (2022-05-20T21:16:44Z) - On the Efficiency of Integrating Self-supervised Learning and
Meta-learning for User-defined Few-shot Keyword Spotting [51.41426141283203]
User-defined keyword spotting is a task to detect new spoken terms defined by users.
Previous works try to incorporate self-supervised learning models or apply meta-learning algorithms.
Our result shows that HuBERT combined with Matching network achieves the best result.
arXiv Detail & Related papers (2022-04-01T10:59:39Z) - Semantic Search for Large Scale Clinical Ontologies [63.71950996116403]
We present a deep learning approach to build a search system for large clinical vocabularies.
We propose a Triplet-BERT model and a method that generates training data based on semantic training data.
The model is evaluated using five real benchmark data sets and the results show that our approach achieves high results on both free text to concept and concept to searching concept vocabularies.
arXiv Detail & Related papers (2022-01-01T05:15:42Z) - Decrypting Cryptic Crosswords: Semantically Complex Wordplay Puzzles as
a Target for NLP [5.447716844779342]
Cryptic crosswords are the dominant English-language crossword variety in the United Kingdom.
We present a dataset of cryptic crossword clues that can be used as a benchmark and train a sequence-to-sequence model to solve them.
We show that performance can be substantially improved using a novel curriculum learning approach.
arXiv Detail & Related papers (2021-04-17T18:54:00Z) - Few-Shot Keyword Spotting With Prototypical Networks [3.6930948691311016]
keyword spotting has been widely used in many voice interfaces such as Amazon's Alexa and Google Home.
We first formulate this problem as a few-shot keyword spotting and approach it using metric learning.
We then propose a solution to the prototypical few-shot keyword spotting problem using temporal and dilated convolutions on networks.
arXiv Detail & Related papers (2020-07-25T20:17:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.