Counterfactual Reasoning for Multi-Label Image Classification via Patching-Based Training
- URL: http://arxiv.org/abs/2404.06287v2
- Date: Thu, 13 Jun 2024 03:38:36 GMT
- Title: Counterfactual Reasoning for Multi-Label Image Classification via Patching-Based Training
- Authors: Ming-Kun Xie, Jia-Hao Xiao, Pei Peng, Gang Niu, Masashi Sugiyama, Sheng-Jun Huang,
- Abstract summary: Overemphasizing co-occurrence relationships can cause the overfitting issue of the model.
We provide a causal inference framework to show that the correlative features caused by the target object and its co-occurring objects can be regarded as a mediator.
- Score: 84.95281245784348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The key to multi-label image classification (MLC) is to improve model performance by leveraging label correlations. Unfortunately, it has been shown that overemphasizing co-occurrence relationships can cause the overfitting issue of the model, ultimately leading to performance degradation. In this paper, we provide a causal inference framework to show that the correlative features caused by the target object and its co-occurring objects can be regarded as a mediator, which has both positive and negative impacts on model predictions. On the positive side, the mediator enhances the recognition performance of the model by capturing co-occurrence relationships; on the negative side, it has the harmful causal effect that causes the model to make an incorrect prediction for the target object, even when only co-occurring objects are present in an image. To address this problem, we propose a counterfactual reasoning method to measure the total direct effect, achieved by enhancing the direct effect caused only by the target object. Due to the unknown location of the target object, we propose patching-based training and inference to accomplish this goal, which divides an image into multiple patches and identifies the pivot patch that contains the target object. Experimental results on multiple benchmark datasets with diverse configurations validate that the proposed method can achieve state-of-the-art performance.
Related papers
- Stanceformer: Target-Aware Transformer for Stance Detection [59.69858080492586]
Stance Detection involves discerning the stance expressed in a text towards a specific subject or target.
Prior works have relied on existing transformer models that lack the capability to prioritize targets effectively.
We introduce Stanceformer, a target-aware transformer model that incorporates enhanced attention towards the targets during both training and inference.
arXiv Detail & Related papers (2024-10-09T17:24:28Z) - Mutually-Aware Feature Learning for Few-Shot Object Counting [20.623402944601775]
Few-shot object counting has garnered significant attention for its practicality as it aims to count target objects in a query image based on given exemplars without the need for additional training.
We propose a novel framework, Mutually-Aware FEAture learning(MAFEA), which encodes query and exemplar features mutually aware of each other from the outset.
Our model reaches a new state-of-the-art performance on the two challenging benchmarks, FSCD-LVIS and FSC-147, with a remarkably reduced degree of the target confusion problem.
arXiv Detail & Related papers (2024-08-19T06:46:24Z) - COT: A Generative Approach for Hate Speech Counter-Narratives via Contrastive Optimal Transport [25.73474734479759]
This research paper introduces a novel framework based on contrastive optimal transport.
It effectively addresses the challenges of maintaining target interaction and promoting diversification in generating counter-narratives.
Our proposed model significantly outperforms current methods evaluated by metrics from multiple aspects.
arXiv Detail & Related papers (2024-06-18T06:24:26Z) - Scene-Graph ViT: End-to-End Open-Vocabulary Visual Relationship Detection [14.22646492640906]
We propose a simple and highly efficient decoder-free architecture for open-vocabulary visual relationship detection.
Our model consists of a Transformer-based image encoder that represents objects as tokens and models their relationships implicitly.
Our approach achieves state-of-the-art relationship detection performance on Visual Genome and on the large-vocabulary GQA benchmark at real-time inference speeds.
arXiv Detail & Related papers (2024-03-21T10:15:57Z) - Counterfactual Image Generation for adversarially robust and
interpretable Classifiers [1.3859669037499769]
We propose a unified framework leveraging image-to-image translation Generative Adrial Networks (GANs) to produce counterfactual samples.
This is achieved by combining the classifier and discriminator into a single model that attributes real images to their respective classes and flags generated images as "fake"
We show how the model exhibits improved robustness to adversarial attacks, and we show how the discriminator's "fakeness" value serves as an uncertainty measure of the predictions.
arXiv Detail & Related papers (2023-10-01T18:50:29Z) - Suspected Object Matters: Rethinking Model's Prediction for One-stage
Visual Grounding [93.82542533426766]
We propose a Suspected Object Transformation mechanism (SOT) to encourage the target object selection among the suspected ones.
SOT can be seamlessly integrated into existing CNN and Transformer-based one-stage visual grounders.
Extensive experiments demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2022-03-10T06:41:07Z) - Instance-Level Relative Saliency Ranking with Graph Reasoning [126.09138829920627]
We present a novel unified model to segment salient instances and infer relative saliency rank order.
A novel loss function is also proposed to effectively train the saliency ranking branch.
experimental results demonstrate that our proposed model is more effective than previous methods.
arXiv Detail & Related papers (2021-07-08T13:10:42Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
We propose attentional prototype inference (API), a probabilistic latent variable framework for few-shot segmentation.
We define a global latent variable to represent the prototype of each object category, which we model as a probabilistic distribution.
We conduct extensive experiments on four benchmarks, where our proposal obtains at least competitive and often better performance than state-of-the-art prototype-based methods.
arXiv Detail & Related papers (2021-05-14T06:58:44Z) - GAP++: Learning to generate target-conditioned adversarial examples [28.894143619182426]
Adversarial examples are perturbed inputs which can cause a serious threat for machine learning models.
We propose a more general-purpose framework which infers target-conditioned perturbations dependent on both input image and target label.
Our method achieves superior performance with single target attack models and obtains high fooling rates with small perturbation norms.
arXiv Detail & Related papers (2020-06-09T07:49:49Z) - Adaptive Object Detection with Dual Multi-Label Prediction [78.69064917947624]
We propose a novel end-to-end unsupervised deep domain adaptation model for adaptive object detection.
The model exploits multi-label prediction to reveal the object category information in each image.
We introduce a prediction consistency regularization mechanism to assist object detection.
arXiv Detail & Related papers (2020-03-29T04:23:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.