Stanceformer: Target-Aware Transformer for Stance Detection
- URL: http://arxiv.org/abs/2410.07083v1
- Date: Wed, 9 Oct 2024 17:24:28 GMT
- Title: Stanceformer: Target-Aware Transformer for Stance Detection
- Authors: Krishna Garg, Cornelia Caragea,
- Abstract summary: Stance Detection involves discerning the stance expressed in a text towards a specific subject or target.
Prior works have relied on existing transformer models that lack the capability to prioritize targets effectively.
We introduce Stanceformer, a target-aware transformer model that incorporates enhanced attention towards the targets during both training and inference.
- Score: 59.69858080492586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The task of Stance Detection involves discerning the stance expressed in a text towards a specific subject or target. Prior works have relied on existing transformer models that lack the capability to prioritize targets effectively. Consequently, these models yield similar performance regardless of whether we utilize or disregard target information, undermining the task's significance. To address this challenge, we introduce Stanceformer, a target-aware transformer model that incorporates enhanced attention towards the targets during both training and inference. Specifically, we design a \textit{Target Awareness} matrix that increases the self-attention scores assigned to the targets. We demonstrate the efficacy of the Stanceformer with various BERT-based models, including state-of-the-art models and Large Language Models (LLMs), and evaluate its performance across three stance detection datasets, alongside a zero-shot dataset. Our approach Stanceformer not only provides superior performance but also generalizes even to other domains, such as Aspect-based Sentiment Analysis. We make the code publicly available.\footnote{\scriptsize\url{https://github.com/kgarg8/Stanceformer}}
Related papers
- DeTra: A Unified Model for Object Detection and Trajectory Forecasting [68.85128937305697]
Our approach formulates the union of the two tasks as a trajectory refinement problem.
To tackle this unified task, we design a refinement transformer that infers the presence, pose, and multi-modal future behaviors of objects.
In our experiments, we observe that ourmodel outperforms the state-of-the-art on Argoverse 2 Sensor and Open dataset.
arXiv Detail & Related papers (2024-06-06T18:12:04Z) - Labeling Indoor Scenes with Fusion of Out-of-the-Box Perception Models [4.157013247909771]
We propose to leverage the recent advancements in state-of-the-art models for bottom-up segmentation (SAM), object detection (Detic), and semantic segmentation (MaskFormer)
We aim to develop a cost-effective labeling approach to obtain pseudo-labels for semantic segmentation and object instance detection in indoor environments.
We demonstrate the effectiveness of the proposed approach on the Active Vision dataset and the ADE20K dataset.
arXiv Detail & Related papers (2023-11-17T21:58:26Z) - Weakly-supervised 3D Pose Transfer with Keypoints [57.66991032263699]
Main challenges of 3D pose transfer are: 1) Lack of paired training data with different characters performing the same pose; 2) Disentangling pose and shape information from the target mesh; 3) Difficulty in applying to meshes with different topologies.
We propose a novel weakly-supervised keypoint-based framework to overcome these difficulties.
arXiv Detail & Related papers (2023-07-25T12:40:24Z) - A Billion-scale Foundation Model for Remote Sensing Images [5.065947993017157]
Three key factors in pretraining foundation models are the pretraining method, the size of the pretraining dataset, and the number of model parameters.
This paper examines the effect of increasing the number of model parameters on the performance of foundation models in downstream tasks.
To the best of our knowledge, this is the first billion-scale foundation model in the remote sensing field.
arXiv Detail & Related papers (2023-04-11T13:33:45Z) - Zero-shot stance detection based on cross-domain feature enhancement by
contrastive learning [9.719309795292773]
We propose a stance detection approach that can efficiently adapt to unseen targets.
We first augment the data by masking the topic words of sentences.
We then feed the augmented data to an unsupervised contrastive learning module to capture transferable features.
arXiv Detail & Related papers (2022-10-07T07:45:40Z) - Vision Transformer with Deformable Attention [29.935891419574602]
Large, sometimes even global, receptive field endows Transformer models with higher representation power over their CNN counterparts.
We propose a novel deformable self-attention module, where the positions of key and value pairs in self-attention are selected in a data-dependent way.
We present Deformable Attention Transformer, a general backbone model with deformable attention for both image classification and dense prediction tasks.
arXiv Detail & Related papers (2022-01-03T08:29:01Z) - Learning Dynamic Compact Memory Embedding for Deformable Visual Object
Tracking [82.34356879078955]
We propose a compact memory embedding to enhance the discrimination of the segmentation-based deformable visual tracking method.
Our method outperforms the excellent segmentation-based trackers, i.e., D3S and SiamMask on DAVIS 2017 benchmark.
arXiv Detail & Related papers (2021-11-23T03:07:12Z) - Transformer-Based Source-Free Domain Adaptation [134.67078085569017]
We study the task of source-free domain adaptation (SFDA), where the source data are not available during target adaptation.
We propose a generic and effective framework based on Transformer, named TransDA, for learning a generalized model for SFDA.
arXiv Detail & Related papers (2021-05-28T23:06:26Z) - Synthesizing the Unseen for Zero-shot Object Detection [72.38031440014463]
We propose to synthesize visual features for unseen classes, so that the model learns both seen and unseen objects in the visual domain.
We use a novel generative model that uses class-semantics to not only generate the features but also to discriminatively separate them.
arXiv Detail & Related papers (2020-10-19T12:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.