Generative Pre-Trained Transformer for Symbolic Regression Base In-Context Reinforcement Learning
- URL: http://arxiv.org/abs/2404.06330v1
- Date: Tue, 9 Apr 2024 14:08:47 GMT
- Title: Generative Pre-Trained Transformer for Symbolic Regression Base In-Context Reinforcement Learning
- Authors: Yanjie Li, Weijun Li, Lina Yu, Min Wu, Jingyi Liu, Wenqiang Li, Meilan Hao, Shu Wei, Yusong Deng,
- Abstract summary: Finding mathematical formulas from observational data is a major demand of scientific research.
FormulaGPT achieves the state-of-the-art performance in fitting ability compared with four baselines.
- Score: 12.660401635672967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The mathematical formula is the human language to describe nature and is the essence of scientific research. Finding mathematical formulas from observational data is a major demand of scientific research and a major challenge of artificial intelligence. This area is called symbolic regression. Originally symbolic regression was often formulated as a combinatorial optimization problem and solved using GP or reinforcement learning algorithms. These two kinds of algorithms have strong noise robustness ability and good Versatility. However, inference time usually takes a long time, so the search efficiency is relatively low. Later, based on large-scale pre-training data proposed, such methods use a large number of synthetic data points and expression pairs to train a Generative Pre-Trained Transformer(GPT). Then this GPT can only need to perform one forward propagation to obtain the results, the advantage is that the inference speed is very fast. However, its performance is very dependent on the training data and performs poorly on data outside the training set, which leads to poor noise robustness and Versatility of such methods. So, can we combine the advantages of the above two categories of SR algorithms? In this paper, we propose \textbf{FormulaGPT}, which trains a GPT using massive sparse reward learning histories of reinforcement learning-based SR algorithms as training data. After training, the SR algorithm based on reinforcement learning is distilled into a Transformer. When new test data comes, FormulaGPT can directly generate a "reinforcement learning process" and automatically update the learning policy in context. Tested on more than ten datasets including SRBench, formulaGPT achieves the state-of-the-art performance in fitting ability compared with four baselines. In addition, it achieves satisfactory results in noise robustness, versatility, and inference efficiency.
Related papers
- Data Augmentation for Sparse Multidimensional Learning Performance Data Using Generative AI [17.242331892899543]
Learning performance data describe correct and incorrect answers or problem-solving attempts in adaptive learning.
Learning performance data tend to be highly sparse (80%(sim)90% missing observations) in most real-world applications due to adaptive item selection.
This article proposes a systematic framework for augmenting learner data to address data sparsity in learning performance data.
arXiv Detail & Related papers (2024-09-24T00:25:07Z) - Discovering symbolic expressions with parallelized tree search [59.92040079807524]
Symbolic regression plays a crucial role in scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data.
Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade when handling problems of complexity.
We introduce a parallelized tree search (PTS) model to efficiently distill generic mathematical expressions from limited data.
arXiv Detail & Related papers (2024-07-05T10:41:15Z) - MMSR: Symbolic Regression is a Multimodal Task [12.660401635672967]
Symbolic regression was originally formulated as a optimization problem, and GP and reinforcement learning algorithms were used to solve it.
To solve this problem, researchers treat the mapping from data to expressions as a translation problem.
In this paper, we propose MMSR, which achieves the most advanced results on multiple mainstream datasets.
arXiv Detail & Related papers (2024-02-28T08:29:42Z) - Discovering Mathematical Formulas from Data via GPT-guided Monte Carlo
Tree Search [13.136507215114722]
We introduce SR-GPT, a novel algorithm for symbolic regression.
It integrates Monte Carlo Tree Search (MCTS) with a Generative Pre-Trained Transformer (GPT)
arXiv Detail & Related papers (2024-01-24T07:47:04Z) - Efficient Grammatical Error Correction Via Multi-Task Training and
Optimized Training Schedule [55.08778142798106]
We propose auxiliary tasks that exploit the alignment between the original and corrected sentences.
We formulate each task as a sequence-to-sequence problem and perform multi-task training.
We find that the order of datasets used for training and even individual instances within a dataset may have important effects on the final performance.
arXiv Detail & Related papers (2023-11-20T14:50:12Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Deep Generative Symbolic Regression with Monte-Carlo-Tree-Search [29.392036559507755]
Symbolic regression is a problem of learning a symbolic expression from numerical data.
Deep neural models trained on procedurally-generated synthetic datasets showed competitive performance.
We propose a novel method which provides the best of both worlds, based on a Monte-Carlo Tree Search procedure.
arXiv Detail & Related papers (2023-02-22T09:10:20Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
Underlying data structures are often exploited to improve the solution of learning tasks.
Data augmentation induces these symmetries during training by applying multiple transformations to the input data.
This work tackles these issues by automatically adapting the data augmentation while solving the learning task.
arXiv Detail & Related papers (2022-09-29T18:11:01Z) - An Empirical Analysis of Recurrent Learning Algorithms In Neural Lossy
Image Compression Systems [73.48927855855219]
Recent advances in deep learning have resulted in image compression algorithms that outperform JPEG and JPEG 2000 on the standard Kodak benchmark.
In this paper, we perform the first large-scale comparison of recent state-of-the-art hybrid neural compression algorithms.
arXiv Detail & Related papers (2022-01-27T19:47:51Z) - Learning Fast Sample Re-weighting Without Reward Data [41.92662851886547]
This paper presents a novel learning-based fast sample re-weighting (FSR) method that does not require additional reward data.
Our experiments show the proposed method achieves competitive results compared to state of the arts on label noise and long-tailed recognition.
arXiv Detail & Related papers (2021-09-07T17:30:56Z) - Transformer Networks for Data Augmentation of Human Physical Activity
Recognition [61.303828551910634]
State of the art models like Recurrent Generative Adrial Networks (RGAN) are used to generate realistic synthetic data.
In this paper, transformer based generative adversarial networks which have global attention on data, are compared on PAMAP2 and Real World Human Activity Recognition data sets with RGAN.
arXiv Detail & Related papers (2021-09-02T16:47:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.