Emergent Dynamics in Neural Cellular Automata
- URL: http://arxiv.org/abs/2404.06406v3
- Date: Thu, 20 Jun 2024 09:28:49 GMT
- Title: Emergent Dynamics in Neural Cellular Automata
- Authors: Yitao Xu, Ehsan Pajouheshgar, Sabine Süsstrunk,
- Abstract summary: We investigate the relationship between the Neural Cellular Automata architecture and the emergent dynamics of the trained models.
Our analysis reveals that the disparity and proportionality between these two variables have a strong correlation with the emergent dynamics in the NCA output.
- Score: 23.73063532045145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Cellular Automata (NCA) models are trainable variations of traditional Cellular Automata (CA). Emergent motion in the patterns created by NCA has been successfully applied to synthesize dynamic textures. However, the conditions required for an NCA to display dynamic patterns remain unexplored. Here, we investigate the relationship between the NCA architecture and the emergent dynamics of the trained models. Specifically, we vary the number of channels in the cell state and the number of hidden neurons in the MultiLayer Perceptron (MLP), and draw a relationship between the combination of these two variables and the motion strength between successive frames. Our analysis reveals that the disparity and proportionality between these two variables have a strong correlation with the emergent dynamics in the NCA output. We thus propose a design principle for creating dynamic NCA.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - NoiseNCA: Noisy Seed Improves Spatio-Temporal Continuity of Neural Cellular Automata [23.73063532045145]
NCA is a class of Cellular Automata where the update rule is parameterized by a neural network.
We show that existing NCA models tend to overfit the training discretization.
We propose a solution that utilizes uniform noise as the initial condition.
arXiv Detail & Related papers (2024-04-09T13:02:33Z) - Learning spatio-temporal patterns with Neural Cellular Automata [0.0]
We train NCA to learn complex dynamics from time series of images and PDE trajectories.
We extend NCA to capture both transient and stable structures within the same system.
Being able to learn arbitrary dynamics gives NCA great potential as a data driven modelling framework.
arXiv Detail & Related papers (2023-10-23T11:16:32Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
We propose a new decomposed dynamical system model that represents complex non-stationary and nonlinear dynamics of time series data.
Our model is trained through a dictionary learning procedure, where we leverage recent results in tracking sparse vectors over time.
In both continuous-time and discrete-time instructional examples we demonstrate that our model can well approximate the original system.
arXiv Detail & Related papers (2022-06-07T02:25:38Z) - Growing Isotropic Neural Cellular Automata [63.91346650159648]
We argue that the original Growing NCA model has an important limitation: anisotropy of the learned update rule.
We demonstrate that cell systems can be trained to grow accurate asymmetrical patterns through either of two methods.
arXiv Detail & Related papers (2022-05-03T11:34:22Z) - A Note on Learning Rare Events in Molecular Dynamics using LSTM and
Transformer [4.80427355202687]
Recently successful examples on learning slow dynamics by LSTM are given with simulation data of low dimensional reaction coordinate.
We show that the following three key factors significantly affect the performance of language model learning, namely dimensionality of reaction coordinates, temporal resolution and state partition.
arXiv Detail & Related papers (2021-07-14T09:26:36Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model.
The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with input.
Experiments demonstrate the model's ability to adapt to and continually learn from its input.
arXiv Detail & Related papers (2021-04-22T04:01:32Z) - Automated and Formal Synthesis of Neural Barrier Certificates for
Dynamical Models [70.70479436076238]
We introduce an automated, formal, counterexample-based approach to synthesise Barrier Certificates (BC)
The approach is underpinned by an inductive framework, which manipulates a candidate BC structured as a neural network, and a sound verifier, which either certifies the candidate's validity or generates counter-examples.
The outcomes show that we can synthesise sound BCs up to two orders of magnitude faster, with in particular a stark speedup on the verification engine.
arXiv Detail & Related papers (2020-07-07T07:39:42Z) - Neural Cellular Automata Manifold [84.08170531451006]
We show that the neural network architecture of the Neural Cellular Automata can be encapsulated in a larger NN.
This allows us to propose a new model that encodes a manifold of NCA, each of them capable of generating a distinct image.
In biological terms, our approach would play the role of the transcription factors, modulating the mapping of genes into specific proteins that drive cellular differentiation.
arXiv Detail & Related papers (2020-06-22T11:41:57Z) - Relational State-Space Model for Stochastic Multi-Object Systems [24.234120525358456]
This paper introduces the relational state-space model (R-SSM), a sequential hierarchical latent variable model.
R-SSM makes use of graph neural networks (GNNs) to simulate the joint state transitions of multiple correlated objects.
The utility of R-SSM is empirically evaluated on synthetic and real time-series datasets.
arXiv Detail & Related papers (2020-01-13T03:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.