Magic-Boost: Boost 3D Generation with Mutli-View Conditioned Diffusion
- URL: http://arxiv.org/abs/2404.06429v1
- Date: Tue, 9 Apr 2024 16:20:03 GMT
- Title: Magic-Boost: Boost 3D Generation with Mutli-View Conditioned Diffusion
- Authors: Fan Yang, Jianfeng Zhang, Yichun Shi, Bowen Chen, Chenxu Zhang, Huichao Zhang, Xiaofeng Yang, Jiashi Feng, Guosheng Lin,
- Abstract summary: We propose Magic-Boost, a multi-view conditioned diffusion model that significantly refines coarse generative results.
Compared to the previous text or single image based diffusion models, Magic-Boost exhibits a robust capability to generate images with high consistency.
It provides precise SDS guidance that well aligns with the identity of the input images, enriching the local detail in both geometry and texture of the initial generative results.
- Score: 88.02512124661884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Benefiting from the rapid development of 2D diffusion models, 3D content creation has made significant progress recently. One promising solution involves the fine-tuning of pre-trained 2D diffusion models to harness their capacity for producing multi-view images, which are then lifted into accurate 3D models via methods like fast-NeRFs or large reconstruction models. However, as inconsistency still exists and limited generated resolution, the generation results of such methods still lack intricate textures and complex geometries. To solve this problem, we propose Magic-Boost, a multi-view conditioned diffusion model that significantly refines coarse generative results through a brief period of SDS optimization ($\sim15$min). Compared to the previous text or single image based diffusion models, Magic-Boost exhibits a robust capability to generate images with high consistency from pseudo synthesized multi-view images. It provides precise SDS guidance that well aligns with the identity of the input images, enriching the local detail in both geometry and texture of the initial generative results. Extensive experiments show Magic-Boost greatly enhances the coarse inputs and generates high-quality 3D assets with rich geometric and textural details. (Project Page: https://magic-research.github.io/magic-boost/)
Related papers
- Unique3D: High-Quality and Efficient 3D Mesh Generation from a Single Image [28.759158325097093]
Unique3D is a novel image-to-3D framework for efficiently generating high-quality 3D meshes from single-view images.
Our framework features state-of-the-art generation fidelity and strong generalizability.
arXiv Detail & Related papers (2024-05-30T17:59:54Z) - One-2-3-45++: Fast Single Image to 3D Objects with Consistent Multi-View
Generation and 3D Diffusion [32.29687304798145]
One-2-3-45++ is an innovative method that transforms a single image into a detailed 3D textured mesh in approximately one minute.
Our approach aims to fully harness the extensive knowledge embedded in 2D diffusion models and priors from valuable yet limited 3D data.
arXiv Detail & Related papers (2023-11-14T03:40:25Z) - Instant3D: Fast Text-to-3D with Sparse-View Generation and Large
Reconstruction Model [68.98311213582949]
We propose Instant3D, a novel method that generates high-quality and diverse 3D assets from text prompts in a feed-forward manner.
Our method can generate diverse 3D assets of high visual quality within 20 seconds, two orders of magnitude faster than previous optimization-based methods.
arXiv Detail & Related papers (2023-11-10T18:03:44Z) - EfficientDreamer: High-Fidelity and Robust 3D Creation via Orthogonal-view Diffusion Prior [59.25950280610409]
We propose a robust high-quality 3D content generation pipeline by exploiting orthogonal-view image guidance.
In this paper, we introduce a novel 2D diffusion model that generates an image consisting of four sub-images based on the given text prompt.
We also present a 3D synthesis network that can further improve the details of the generated 3D contents.
arXiv Detail & Related papers (2023-08-25T07:39:26Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3D is a text-and-image-guided generative model for 3D avatar generation based on diffusion models.
Our framework produces topologically and structurally correct geometry and high-resolution textures.
arXiv Detail & Related papers (2023-08-18T17:55:47Z) - TextMesh: Generation of Realistic 3D Meshes From Text Prompts [56.2832907275291]
We propose a novel method for generation of highly realistic-looking 3D meshes.
To this end, we extend NeRF to employ an SDF backbone, leading to improved 3D mesh extraction.
arXiv Detail & Related papers (2023-04-24T20:29:41Z) - Magic3D: High-Resolution Text-to-3D Content Creation [78.40092800817311]
DreamFusion has recently demonstrated the utility of a pre-trained text-to-image diffusion model to optimize Neural Radiance Fields (NeRF)
In this paper, we address these limitations by utilizing a two-stage optimization framework.
Our method, dubbed Magic3D, can create high quality 3D mesh models in 40 minutes, which is 2x faster than DreamFusion.
arXiv Detail & Related papers (2022-11-18T18:59:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.