Hi3D: Pursuing High-Resolution Image-to-3D Generation with Video Diffusion Models
- URL: http://arxiv.org/abs/2409.07452v1
- Date: Wed, 11 Sep 2024 17:58:57 GMT
- Title: Hi3D: Pursuing High-Resolution Image-to-3D Generation with Video Diffusion Models
- Authors: Haibo Yang, Yang Chen, Yingwei Pan, Ting Yao, Zhineng Chen, Chong-Wah Ngo, Tao Mei,
- Abstract summary: High-resolution Image-to-3D model (Hi3D) is a new video diffusion based paradigm that redefines a single image to multi-view images as 3D-aware sequential image generation.
Hi3D first empowers the pre-trained video diffusion model with 3D-aware prior, yielding multi-view images with low-resolution texture details.
- Score: 112.2625368640425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite having tremendous progress in image-to-3D generation, existing methods still struggle to produce multi-view consistent images with high-resolution textures in detail, especially in the paradigm of 2D diffusion that lacks 3D awareness. In this work, we present High-resolution Image-to-3D model (Hi3D), a new video diffusion based paradigm that redefines a single image to multi-view images as 3D-aware sequential image generation (i.e., orbital video generation). This methodology delves into the underlying temporal consistency knowledge in video diffusion model that generalizes well to geometry consistency across multiple views in 3D generation. Technically, Hi3D first empowers the pre-trained video diffusion model with 3D-aware prior (camera pose condition), yielding multi-view images with low-resolution texture details. A 3D-aware video-to-video refiner is learnt to further scale up the multi-view images with high-resolution texture details. Such high-resolution multi-view images are further augmented with novel views through 3D Gaussian Splatting, which are finally leveraged to obtain high-fidelity meshes via 3D reconstruction. Extensive experiments on both novel view synthesis and single view reconstruction demonstrate that our Hi3D manages to produce superior multi-view consistency images with highly-detailed textures. Source code and data are available at \url{https://github.com/yanghb22-fdu/Hi3D-Official}.
Related papers
- Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
3D object generation from a single image involves estimating the full 3D geometry and texture of unseen views from an unposed RGB image captured in the wild.
Recent advancements in 3D object generation have introduced techniques that reconstruct an object's 3D shape and texture.
We propose bridging the gap between 2D and 3D diffusion models to address this limitation.
arXiv Detail & Related papers (2024-10-12T10:14:11Z) - Unique3D: High-Quality and Efficient 3D Mesh Generation from a Single Image [28.759158325097093]
Unique3D is a novel image-to-3D framework for efficiently generating high-quality 3D meshes from single-view images.
Our framework features state-of-the-art generation fidelity and strong generalizability.
arXiv Detail & Related papers (2024-05-30T17:59:54Z) - MVD-Fusion: Single-view 3D via Depth-consistent Multi-view Generation [54.27399121779011]
We present MVD-Fusion: a method for single-view 3D inference via generative modeling of multi-view-consistent RGB-D images.
We show that our approach can yield more accurate synthesis compared to recent state-of-the-art, including distillation-based 3D inference and prior multi-view generation methods.
arXiv Detail & Related papers (2024-04-04T17:59:57Z) - SV3D: Novel Multi-view Synthesis and 3D Generation from a Single Image using Latent Video Diffusion [33.69006364120861]
We present Stable Video 3D (SV3D) -- a latent video diffusion model for high-resolution, image-to-multi-view generation of orbital videos around a 3D object.
arXiv Detail & Related papers (2024-03-18T17:46:06Z) - 3D-SceneDreamer: Text-Driven 3D-Consistent Scene Generation [51.64796781728106]
We propose a generative refinement network to synthesize new contents with higher quality by exploiting the natural image prior to 2D diffusion model and the global 3D information of the current scene.
Our approach supports wide variety of scene generation and arbitrary camera trajectories with improved visual quality and 3D consistency.
arXiv Detail & Related papers (2024-03-14T14:31:22Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
We present a new framework Sculpt3D that equips the current pipeline with explicit injection of 3D priors from retrieved reference objects without re-training the 2D diffusion model.
Specifically, we demonstrate that high-quality and diverse 3D geometry can be guaranteed by keypoints supervision through a sparse ray sampling approach.
These two decoupled designs effectively harness 3D information from reference objects to generate 3D objects while preserving the generation quality of the 2D diffusion model.
arXiv Detail & Related papers (2024-03-14T07:39:59Z) - One-2-3-45++: Fast Single Image to 3D Objects with Consistent Multi-View
Generation and 3D Diffusion [32.29687304798145]
One-2-3-45++ is an innovative method that transforms a single image into a detailed 3D textured mesh in approximately one minute.
Our approach aims to fully harness the extensive knowledge embedded in 2D diffusion models and priors from valuable yet limited 3D data.
arXiv Detail & Related papers (2023-11-14T03:40:25Z) - HoloFusion: Towards Photo-realistic 3D Generative Modeling [77.03830223281787]
Diffusion-based image generators can now produce high-quality and diverse samples, but their success has yet to fully translate to 3D generation.
We present HoloFusion, a method that combines the best of these approaches to produce high-fidelity, plausible, and diverse 3D samples.
arXiv Detail & Related papers (2023-08-28T01:19:33Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3D is a text-and-image-guided generative model for 3D avatar generation based on diffusion models.
Our framework produces topologically and structurally correct geometry and high-resolution textures.
arXiv Detail & Related papers (2023-08-18T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.