Text-Based Reasoning About Vector Graphics
- URL: http://arxiv.org/abs/2404.06479v3
- Date: Fri, 24 May 2024 19:40:26 GMT
- Title: Text-Based Reasoning About Vector Graphics
- Authors: Zhenhailong Wang, Joy Hsu, Xingyao Wang, Kuan-Hao Huang, Manling Li, Jiajun Wu, Heng Ji,
- Abstract summary: We propose the Visually Descriptive Language Model (VDLM), which performs text-based reasoning about vector graphics.
VDLM bridges with pretrained language models through a newly introduced symbolic representation, Primal Visual Description (PVD)
Our framework offers better interpretability due to its disentangled perception and reasoning processes.
- Score: 76.42082386029206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While large multimodal models excel in broad vision-language benchmarks, they often struggle with tasks requiring precise perception of low-level visual details, such as comparing line lengths or solving simple mazes. In particular, this failure mode persists in question-answering tasks about vector graphics -- images composed purely of 2D objects and shapes. To address this challenge, we propose the Visually Descriptive Language Model (VDLM), which performs text-based reasoning about vector graphics. VDLM leverages Scalable Vector Graphics (SVG) for a more precise visual description and first uses an off-the-shelf raster-to-SVG algorithm for encoding. Since existing language models cannot understand raw SVGs in a zero-shot setting, VDLM then bridges SVG with pretrained language models through a newly introduced intermediate symbolic representation, Primal Visual Description (PVD), comprising primitive attributes (e.g., shape, position, measurement) with their corresponding predicted values. PVD is task-agnostic and represents visual primitives that are universal across all vector graphics. It can be learned with procedurally generated (SVG, PVD) pairs and also enables the direct use of LLMs for generalization to complex reasoning tasks. By casting an image to a text-based representation, we can leverage the power of language models to learn alignment from SVG to visual primitives and generalize to unseen question-answering tasks. Empirical results show that VDLM achieves stronger zero-shot performance compared to state-of-the-art LMMs, such as GPT-4V, in various low-level multimodal perception and reasoning tasks on vector graphics. We additionally present extensive analyses on VDLM's performance, demonstrating that our framework offers better interpretability due to its disentangled perception and reasoning processes. Project page: https://mikewangwzhl.github.io/VDLM/
Related papers
- ViCrit: A Verifiable Reinforcement Learning Proxy Task for Visual Perception in VLMs [98.27348724529257]
We introduce ViCrit (Visual Caption Hallucination Critic), an RL proxy task that trains VLMs to localize a subtle, synthetic visual hallucination injected into paragraphs of human-written image captions.<n>Models trained with the ViCrit Task exhibit substantial gains across a variety of vision-language models benchmarks.
arXiv Detail & Related papers (2025-06-11T19:16:54Z) - Towards Understanding Graphical Perception in Large Multimodal Models [80.44471730672801]
We leverage the theory of graphical perception to develop an evaluation framework for analyzing gaps in LMMs' perception abilities in charts.
We apply our framework to evaluate and diagnose the perception capabilities of state-of-the-art LMMs at three levels (chart, visual element, and pixel)
arXiv Detail & Related papers (2025-03-13T20:13:39Z) - Symmetrical Visual Contrastive Optimization: Aligning Vision-Language Models with Minimal Contrastive Images [7.823336661261962]
Large Vision-Language Models (VLMs) tend to neglect image content and over-rely on language-model priors.
We propose S-VCO (Symmetrical Visual Contrastive Optimization), a novel finetuning objective that steers the model toward capturing important visual details.
arXiv Detail & Related papers (2025-02-19T18:05:42Z) - Rethinking Homogeneity of Vision and Text Tokens in Large Vision-and-Language Models [29.611769371733672]
We propose De Attention (D-Attn), a novel method that processes visual and textual embeddings differently.
D-Attn diagonalizes visual-to-visual self-attention, reducing computation from $mathcalO(|V|2)$ to $mathcalO(|V|)$ for $|V|$ visual embeddings without compromising performance.
arXiv Detail & Related papers (2025-02-04T00:46:11Z) - Improving the Efficiency of Visually Augmented Language Models [5.948051066733892]
This paper shows that explicit images are not necessary to visually augment an LM.
Instead, we use visually-grounded text representations obtained from the well-known CLIP multimodal system.
We show that BLIND-VALM performs on par with VALM for Visual Language Understanding (VLU), Natural Language Understanding (NLU) and Language Modeling tasks.
arXiv Detail & Related papers (2024-09-17T13:02:19Z) - Response Wide Shut: Surprising Observations in Basic Vision Language Model Capabilities [30.176918208200604]
Vision-Language Models (VLMs) have emerged as general purpose tools for addressing a variety of complex computer vision problems.
These models have been shown to be highly capable, but also lacking some basic visual understanding skills.
This paper sets out to understand the limitations of SoTA VLMs on fundamental visual tasks.
arXiv Detail & Related papers (2024-08-13T08:26:32Z) - How Well Can Vision Language Models See Image Details? [53.036922527685064]
We introduce a pixel value prediction task to explore "How Well Can Vision Language Models See Image Details?"
Our research reveals that incorporating pixel value prediction as one of the VLM pre-training tasks and vision encoder adaptation markedly boosts VLM performance on downstream image-language understanding tasks.
arXiv Detail & Related papers (2024-08-07T17:59:40Z) - VGBench: Evaluating Large Language Models on Vector Graphics Understanding and Generation [28.1277394934428]
VGBench is a comprehensive benchmark for Large Language Models (LLMs) on handling vector graphics.
LLMs show strong capability on both aspects while exhibiting less desirable performance on low-level formats (SVG)
arXiv Detail & Related papers (2024-07-15T17:59:55Z) - OMG-LLaVA: Bridging Image-level, Object-level, Pixel-level Reasoning and Understanding [112.87441334765693]
OMG-LLaVA is a new framework combining powerful pixel-level vision understanding with reasoning abilities.
It can accept various visual and text prompts for flexible user interaction.
OMG-LLaVA achieves image-level, object-level, and pixel-level reasoning and understanding in a single model.
arXiv Detail & Related papers (2024-06-27T17:59:01Z) - GeoVLN: Learning Geometry-Enhanced Visual Representation with Slot
Attention for Vision-and-Language Navigation [52.65506307440127]
We propose GeoVLN, which learns Geometry-enhanced visual representation based on slot attention for robust Visual-and-Language Navigation.
We employ V&L BERT to learn a cross-modal representation that incorporate both language and vision informations.
arXiv Detail & Related papers (2023-05-26T17:15:22Z) - Jointly Visual- and Semantic-Aware Graph Memory Networks for Temporal
Sentence Localization in Videos [67.12603318660689]
We propose a novel Hierarchical Visual- and Semantic-Aware Reasoning Network (HVSARN)
HVSARN enables both visual- and semantic-aware query reasoning from object-level to frame-level.
Experiments on three datasets demonstrate that our HVSARN achieves a new state-of-the-art performance.
arXiv Detail & Related papers (2023-03-02T08:00:22Z) - Understanding ME? Multimodal Evaluation for Fine-grained Visual
Commonsense [98.70218717851665]
It is unclear whether the models really understand the visual scene and underlying commonsense knowledge due to limited evaluation data resources.
We present a Multimodal Evaluation (ME) pipeline to automatically generate question-answer pairs to test models' understanding of the visual scene, text, and related knowledge.
We then take a step further to show that training with the ME data boosts the model's performance in standard VCR evaluation.
arXiv Detail & Related papers (2022-11-10T21:44:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.