Understanding ME? Multimodal Evaluation for Fine-grained Visual
Commonsense
- URL: http://arxiv.org/abs/2211.05895v2
- Date: Mon, 23 Oct 2023 08:19:43 GMT
- Title: Understanding ME? Multimodal Evaluation for Fine-grained Visual
Commonsense
- Authors: Zhecan Wang, Haoxuan You, Yicheng He, Wenhao Li, Kai-Wei Chang and
Shih-Fu Chang
- Abstract summary: It is unclear whether the models really understand the visual scene and underlying commonsense knowledge due to limited evaluation data resources.
We present a Multimodal Evaluation (ME) pipeline to automatically generate question-answer pairs to test models' understanding of the visual scene, text, and related knowledge.
We then take a step further to show that training with the ME data boosts the model's performance in standard VCR evaluation.
- Score: 98.70218717851665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual commonsense understanding requires Vision Language (VL) models to not
only understand image and text but also cross-reference in-between to fully
integrate and achieve comprehension of the visual scene described. Recently,
various approaches have been developed and have achieved high performance on
visual commonsense benchmarks. However, it is unclear whether the models really
understand the visual scene and underlying commonsense knowledge due to limited
evaluation data resources. To provide an in-depth analysis, we present a
Multimodal Evaluation (ME) pipeline to automatically generate question-answer
pairs to test models' understanding of the visual scene, text, and related
knowledge. We then take a step further to show that training with the ME data
boosts the model's performance in standard VCR evaluation. Lastly, our in-depth
analysis and comparison reveal interesting findings: (1) semantically low-level
information can assist the learning of high-level information but not the
opposite; (2) visual information is generally under utilization compared with
text.
Related papers
- Beyond Coarse-Grained Matching in Video-Text Retrieval [50.799697216533914]
We introduce a new approach for fine-grained evaluation.
Our approach can be applied to existing datasets by automatically generating hard negative test captions.
Experiments on our fine-grained evaluations demonstrate that this approach enhances a model's ability to understand fine-grained differences.
arXiv Detail & Related papers (2024-10-16T09:42:29Z) - Enhancing Vision Models for Text-Heavy Content Understanding and Interaction [0.0]
We build a visual chat application integrating CLIP for image encoding and a model from the Massive Text Embedding Benchmark.
The aim of the project is to increase and also enhance the advance vision models' capabilities in understanding complex visual textual data interconnected data.
arXiv Detail & Related papers (2024-05-31T15:17:47Z) - VLLMs Provide Better Context for Emotion Understanding Through Common Sense Reasoning [66.23296689828152]
We leverage the capabilities of Vision-and-Large-Language Models to enhance in-context emotion classification.
In the first stage, we propose prompting VLLMs to generate descriptions in natural language of the subject's apparent emotion.
In the second stage, the descriptions are used as contextual information and, along with the image input, are used to train a transformer-based architecture.
arXiv Detail & Related papers (2024-04-10T15:09:15Z) - SQ-LLaVA: Self-Questioning for Large Vision-Language Assistant [48.220285886328746]
We introduce a novel framework named SQ-LLaVA: Self-Questioning for Large Vision-Language Assistant.
SQ-LLaVA exhibits proficiency in generating flexible and meaningful image-related questions while analyzing the visual clue and prior language knowledge.
Fine-tuning SQ-LLaVA on higher-quality instruction data shows a performance improvement compared with traditional visual-instruction tuning methods.
arXiv Detail & Related papers (2024-03-17T18:42:38Z) - See, Think, Confirm: Interactive Prompting Between Vision and Language
Models for Knowledge-based Visual Reasoning [60.43585179885355]
We propose a novel framework named Interactive Prompting Visual Reasoner (IPVR) for few-shot knowledge-based visual reasoning.
IPVR contains three stages, see, think and confirm.
We conduct experiments on a range of knowledge-based visual reasoning datasets.
arXiv Detail & Related papers (2023-01-12T18:59:50Z) - VLMAE: Vision-Language Masked Autoencoder [21.97700040013084]
We propose a vision-language masked autoencoder framework (VLMAE) for vision-language pre-training.
VLMAE employs visual generative learning, facilitating the model to acquire fine-grained and unbiased features.
arXiv Detail & Related papers (2022-08-19T14:39:18Z) - Visually-Augmented Language Modeling [137.36789885105642]
We propose a novel pre-training framework, named VaLM, to Visually-augment text tokens with retrieved relevant images for Language Modeling.
With the visually-augmented context, VaLM uses a visual knowledge fusion layer to enable multimodal grounded language modeling.
We evaluate the proposed model on various multimodal commonsense reasoning tasks, which require visual information to excel.
arXiv Detail & Related papers (2022-05-20T13:41:12Z) - MERLOT: Multimodal Neural Script Knowledge Models [74.05631672657452]
We introduce MERLOT, a model that learns multimodal script knowledge by watching millions of YouTube videos with transcribed speech.
MERLOT exhibits strong out-of-the-box representations of temporal commonsense, and achieves state-of-the-art performance on 12 different video QA datasets.
On Visual Commonsense Reasoning, MERLOT answers questions correctly with 80.6% accuracy, outperforming state-of-the-art models of similar size by over 3%.
arXiv Detail & Related papers (2021-06-04T17:57:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.