Reconstructing Hand-Held Objects in 3D from Images and Videos
- URL: http://arxiv.org/abs/2404.06507v3
- Date: Mon, 25 Nov 2024 18:58:07 GMT
- Title: Reconstructing Hand-Held Objects in 3D from Images and Videos
- Authors: Jane Wu, Georgios Pavlakos, Georgia Gkioxari, Jitendra Malik,
- Abstract summary: Given a monocular RGB video, we aim to reconstruct hand-held object geometry in 3D, over time.
We present MCC-Hand-Object (MCC-HO), which jointly reconstructs hand and object geometry given a single RGB image.
We then prompt a text-to-3D generative model using GPT-4(V) to retrieve a 3D object model that matches the object in the image.
- Score: 53.277402172488735
- License:
- Abstract: Objects manipulated by the hand (i.e., manipulanda) are particularly challenging to reconstruct from Internet videos. Not only does the hand occlude much of the object, but also the object is often only visible in a small number of image pixels. At the same time, two strong anchors emerge in this setting: (1) estimated 3D hands help disambiguate the location and scale of the object, and (2) the set of manipulanda is small relative to all possible objects. With these insights in mind, we present a scalable paradigm for hand-held object reconstruction that builds on recent breakthroughs in large language/vision models and 3D object datasets. Given a monocular RGB video, we aim to reconstruct hand-held object geometry in 3D, over time. In order to obtain the best performing single frame model, we first present MCC-Hand-Object (MCC-HO), which jointly reconstructs hand and object geometry given a single RGB image and inferred 3D hand as inputs. Subsequently, we prompt a text-to-3D generative model using GPT-4(V) to retrieve a 3D object model that matches the object in the image(s); we call this alignment Retrieval-Augmented Reconstruction (RAR). RAR provides unified object geometry across all frames, and the result is rigidly aligned with both the input images and 3D MCC-HO observations in a temporally consistent manner. Experiments demonstrate that our approach achieves state-of-the-art performance on lab and Internet image/video datasets. We make our code and models available on the project website: https://janehwu.github.io/mcc-ho
Related papers
- HOLD: Category-agnostic 3D Reconstruction of Interacting Hands and
Objects from Video [70.11702620562889]
HOLD -- the first category-agnostic method that reconstructs an articulated hand and object jointly from a monocular interaction video.
We develop a compositional articulated implicit model that can disentangled 3D hand and object from 2D images.
Our method does not rely on 3D hand-object annotations while outperforming fully-supervised baselines in both in-the-lab and challenging in-the-wild settings.
arXiv Detail & Related papers (2023-11-30T10:50:35Z) - Iterative Superquadric Recomposition of 3D Objects from Multiple Views [77.53142165205283]
We propose a framework, ISCO, to recompose an object using 3D superquadrics as semantic parts directly from 2D views.
Our framework iteratively adds new superquadrics wherever the reconstruction error is high.
It provides consistently more accurate 3D reconstructions, even from images in the wild.
arXiv Detail & Related papers (2023-09-05T10:21:37Z) - 3D Reconstruction of Objects in Hands without Real World 3D Supervision [12.70221786947807]
We propose modules to leverage 3D supervision to scale up the learning of models for reconstructing hand-held objects.
Specifically, we extract multiview 2D mask supervision from videos and 3D shape priors from shape collections.
We use these indirect 3D cues to train occupancy networks that predict the 3D shape of objects from a single RGB image.
arXiv Detail & Related papers (2023-05-04T17:56:48Z) - Anything-3D: Towards Single-view Anything Reconstruction in the Wild [61.090129285205805]
We introduce Anything-3D, a methodical framework that ingeniously combines a series of visual-language models and the Segment-Anything object segmentation model.
Our approach employs a BLIP model to generate textural descriptions, utilize the Segment-Anything model for the effective extraction of objects of interest, and leverages a text-to-image diffusion model to lift object into a neural radiance field.
arXiv Detail & Related papers (2023-04-19T16:39:51Z) - What's in your hands? 3D Reconstruction of Generic Objects in Hands [49.12461675219253]
Our work aims to reconstruct hand-held objects given a single RGB image.
In contrast to prior works that typically assume known 3D templates and reduce the problem to 3D pose estimation, our work reconstructs generic hand-held object without knowing their 3D templates.
arXiv Detail & Related papers (2022-04-14T17:59:02Z) - D3D-HOI: Dynamic 3D Human-Object Interactions from Videos [49.38319295373466]
We introduce D3D-HOI: a dataset of monocular videos with ground truth annotations of 3D object pose, shape and part motion during human-object interactions.
Our dataset consists of several common articulated objects captured from diverse real-world scenes and camera viewpoints.
We leverage the estimated 3D human pose for more accurate inference of the object spatial layout and dynamics.
arXiv Detail & Related papers (2021-08-19T00:49:01Z) - MOLTR: Multiple Object Localisation, Tracking, and Reconstruction from
Monocular RGB Videos [30.541606989348377]
MOLTR is a solution to object-centric mapping using only monocular image sequences and camera poses.
It is able to localise, track, and reconstruct multiple objects in an online fashion when an RGB camera captures a video of the surrounding.
We evaluate localisation, tracking, and reconstruction on benchmarking datasets for indoor and outdoor scenes.
arXiv Detail & Related papers (2020-12-09T23:15:08Z) - CoReNet: Coherent 3D scene reconstruction from a single RGB image [43.74240268086773]
We build on advances in deep learning to reconstruct the shape of a single object given only one RBG image as input.
We propose three extensions: (1) ray-traced skip connections that propagate local 2D information to the output 3D volume in a physically correct manner; (2) a hybrid 3D volume representation that enables building translation equivariant models; and (3) a reconstruction loss tailored to capture overall object geometry.
We reconstruct all objects jointly in one pass, producing a coherent reconstruction, where all objects live in a single consistent 3D coordinate frame relative to the camera and they do not intersect in 3D space.
arXiv Detail & Related papers (2020-04-27T17:53:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.