Best Response Shaping
- URL: http://arxiv.org/abs/2404.06519v1
- Date: Fri, 5 Apr 2024 22:03:35 GMT
- Title: Best Response Shaping
- Authors: Milad Aghajohari, Tim Cooijmans, Juan Agustin Duque, Shunichi Akatsuka, Aaron Courville,
- Abstract summary: LOLA and POLA agents learn reciprocity-based cooperative policies by differentiation through a few look-ahead optimization steps of their opponent.
Because they consider a few optimization steps, a learning opponent that takes many steps to optimize its return may exploit them.
In response, we introduce a novel approach, Best Response Shaping (BRS), which differentiates through an opponent approxing the best response.
- Score: 1.0874100424278175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the challenge of multi-agent deep reinforcement learning in partially competitive environments, where traditional methods struggle to foster reciprocity-based cooperation. LOLA and POLA agents learn reciprocity-based cooperative policies by differentiation through a few look-ahead optimization steps of their opponent. However, there is a key limitation in these techniques. Because they consider a few optimization steps, a learning opponent that takes many steps to optimize its return may exploit them. In response, we introduce a novel approach, Best Response Shaping (BRS), which differentiates through an opponent approximating the best response, termed the "detective." To condition the detective on the agent's policy for complex games we propose a state-aware differentiable conditioning mechanism, facilitated by a question answering (QA) method that extracts a representation of the agent based on its behaviour on specific environment states. To empirically validate our method, we showcase its enhanced performance against a Monte Carlo Tree Search (MCTS) opponent, which serves as an approximation to the best response in the Coin Game. This work expands the applicability of multi-agent RL in partially competitive environments and provides a new pathway towards achieving improved social welfare in general sum games.
Related papers
- Non-Adversarial Inverse Reinforcement Learning via Successor Feature Matching [23.600285251963395]
In inverse reinforcement learning (IRL), an agent seeks to replicate expert demonstrations through interactions with the environment.
Traditionally, IRL is treated as an adversarial game, where an adversary searches over reward models, and a learner optimize the reward through repeated RL procedures.
We propose a novel approach to IRL by direct policy optimization, exploiting a linear factorization of the return as the inner product of successor features and a reward vector.
arXiv Detail & Related papers (2024-11-11T14:05:50Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Toward Optimal LLM Alignments Using Two-Player Games [86.39338084862324]
In this paper, we investigate alignment through the lens of two-agent games, involving iterative interactions between an adversarial and a defensive agent.
We theoretically demonstrate that this iterative reinforcement learning optimization converges to a Nash Equilibrium for the game induced by the agents.
Experimental results in safety scenarios demonstrate that learning in such a competitive environment not only fully trains agents but also leads to policies with enhanced generalization capabilities for both adversarial and defensive agents.
arXiv Detail & Related papers (2024-06-16T15:24:50Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
We propose Hierarchical Opponent modeling and Planning (HOP), a novel multi-agent decision-making algorithm.
HOP is hierarchically composed of two modules: an opponent modeling module that infers others' goals and learns corresponding goal-conditioned policies.
HOP exhibits superior few-shot adaptation capabilities when interacting with various unseen agents, and excels in self-play scenarios.
arXiv Detail & Related papers (2024-06-12T08:48:06Z) - Fast Peer Adaptation with Context-aware Exploration [63.08444527039578]
We propose a peer identification reward for learning agents in multi-agent games.
This reward motivates the agent to learn a context-aware policy for effective exploration and fast adaptation.
We evaluate our method on diverse testbeds that involve competitive (Kuhn Poker), cooperative (PO-Overcooked), or mixed (Predator-Prey-W) games with peer agents.
arXiv Detail & Related papers (2024-02-04T13:02:27Z) - A Minimaximalist Approach to Reinforcement Learning from Human Feedback [49.45285664482369]
We present Self-Play Preference Optimization (SPO), an algorithm for reinforcement learning from human feedback.
Our approach is minimalist in that it does not require training a reward model nor unstable adversarial training.
We demonstrate that on a suite of continuous control tasks, we are able to learn significantly more efficiently than reward-model based approaches.
arXiv Detail & Related papers (2024-01-08T17:55:02Z) - MAC-PO: Multi-Agent Experience Replay via Collective Priority
Optimization [12.473095790918347]
We propose name, which formulates optimal prioritized experience replay for multi-agent problems.
By minimizing the resulting policy regret, we can narrow the gap between the current policy and a nominal optimal policy.
arXiv Detail & Related papers (2023-02-21T03:11:21Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards.
We propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences.
We show that our method leads to the emergence of complex skills by exhibiting clear phase transitions.
arXiv Detail & Related papers (2021-07-12T17:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.