Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning
- URL: http://arxiv.org/abs/2406.08002v2
- Date: Fri, 12 Jul 2024 15:13:43 GMT
- Title: Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning
- Authors: Yizhe Huang, Anji Liu, Fanqi Kong, Yaodong Yang, Song-Chun Zhu, Xue Feng,
- Abstract summary: We propose Hierarchical Opponent modeling and Planning (HOP), a novel multi-agent decision-making algorithm.
HOP is hierarchically composed of two modules: an opponent modeling module that infers others' goals and learns corresponding goal-conditioned policies.
HOP exhibits superior few-shot adaptation capabilities when interacting with various unseen agents, and excels in self-play scenarios.
- Score: 51.52387511006586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the recent successes of multi-agent reinforcement learning (MARL) algorithms, efficiently adapting to co-players in mixed-motive environments remains a significant challenge. One feasible approach is to hierarchically model co-players' behavior based on inferring their characteristics. However, these methods often encounter difficulties in efficient reasoning and utilization of inferred information. To address these issues, we propose Hierarchical Opponent modeling and Planning (HOP), a novel multi-agent decision-making algorithm that enables few-shot adaptation to unseen policies in mixed-motive environments. HOP is hierarchically composed of two modules: an opponent modeling module that infers others' goals and learns corresponding goal-conditioned policies, and a planning module that employs Monte Carlo Tree Search (MCTS) to identify the best response. Our approach improves efficiency by updating beliefs about others' goals both across and within episodes and by using information from the opponent modeling module to guide planning. Experimental results demonstrate that in mixed-motive environments, HOP exhibits superior few-shot adaptation capabilities when interacting with various unseen agents, and excels in self-play scenarios. Furthermore, the emergence of social intelligence during our experiments underscores the potential of our approach in complex multi-agent environments.
Related papers
- Cooperative Multi-Agent Planning with Adaptive Skill Synthesis [16.228784877899976]
Multi-agent systems with reinforcement learning face challenges in sample efficiency, interpretability, and transferability.
We present a novel multi-agent architecture that integrates vision-language models (VLMs) with a dynamic skill library and structured communication for decentralized closed-loop decision-making.
arXiv Detail & Related papers (2025-02-14T13:23:18Z) - SIGMA: Sheaf-Informed Geometric Multi-Agent Pathfinding [4.801673346687721]
The Multi-Agent Path Finding (MAPF) problem aims to determine the shortest and collision-free paths for multiple agents in a known, potentially obstacle-ridden environment.
We introduce a new framework that applies sheaf theory to decentralized deep reinforcement learning, enabling agents to learn geometric cross-dependencies between each other.
In particular, we incorporate a neural network to approximately model the consensus in latent space based on sheaf theory and train it through self-supervised learning.
arXiv Detail & Related papers (2025-02-10T13:17:34Z) - In Search for Architectures and Loss Functions in Multi-Objective Reinforcement Learning [0.6650227510403052]
Multi-objective reinforcement learning (MORL) is essential for addressing the intricacies of real-world RL problems.
MORL is challenging due to unstable learning dynamics with deep learning-based function approximators.
Our work empirically explores model-free policy learning loss functions and the impact of different architectural choices.
arXiv Detail & Related papers (2024-07-23T19:17:47Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Learning in Cooperative Multiagent Systems Using Cognitive and Machine
Models [1.0742675209112622]
Multi-Agent Systems (MAS) are critical for many applications requiring collaboration and coordination with humans.
One major challenge is the simultaneous learning and interaction of independent agents in dynamic environments.
We propose three variants of Multi-Agent IBL models (MAIBL)
We demonstrate that the MAIBL models exhibit faster learning and achieve better coordination in a dynamic CMOTP task with various settings of rewards compared to current MADRL models.
arXiv Detail & Related papers (2023-08-18T00:39:06Z) - Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise
Rollouts [52.844741540236285]
This paper investigates the model-based methods in multi-agent reinforcement learning (MARL)
We propose a novel decentralized model-based MARL method, named Adaptive Opponent-wise Rollout Policy (AORPO)
arXiv Detail & Related papers (2021-05-07T16:20:22Z) - MAPPER: Multi-Agent Path Planning with Evolutionary Reinforcement
Learning in Mixed Dynamic Environments [30.407700996710023]
This paper proposes a decentralized partially observable multi-agent path planning with evolutionary reinforcement learning (MAPPER) method.
We decompose the long-range navigation task into many easier sub-tasks under the guidance of a global planner.
Our approach models dynamic obstacles' behavior with an image-based representation and trains a policy in mixed dynamic environments without homogeneity assumption.
arXiv Detail & Related papers (2020-07-30T20:14:42Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
We present a trainable online decentralized planning algorithm based on decentralized Monte Carlo Tree Search.
We show that deep learning and convolutional neural networks can be employed to produce accurate policy approximators.
arXiv Detail & Related papers (2020-03-19T13:10:20Z) - Multi-Agent Interactions Modeling with Correlated Policies [53.38338964628494]
In this paper, we cast the multi-agent interactions modeling problem into a multi-agent imitation learning framework.
We develop a Decentralized Adrial Imitation Learning algorithm with Correlated policies (CoDAIL)
Various experiments demonstrate that CoDAIL can better regenerate complex interactions close to the demonstrators.
arXiv Detail & Related papers (2020-01-04T17:31:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.