論文の概要: Counting Objects in a Robotic Hand
- arxiv url: http://arxiv.org/abs/2404.06631v1
- Date: Tue, 9 Apr 2024 21:46:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 16:08:54.304605
- Title: Counting Objects in a Robotic Hand
- Title(参考訳): ロボットハンドにおける物体の数え方
- Authors: Francis Tsow, Tianze Chen, Yu Sun,
- Abstract要約: 多目的グリップを行うロボットは、グリップ後に手にあるオブジェクトの数を検出する必要がある。
本稿では,データ駆動型コントラスト学習に基づくカウント分類器を提案する。
提案手法は,実際の3つのオブジェクトに対して96%以上の精度を実現した。
- 参考スコア(独自算出の注目度): 6.057565013011719
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A robot performing multi-object grasping needs to sense the number of objects in the hand after grasping. The count plays an important role in determining the robot's next move and the outcome and efficiency of the whole pick-place process. This paper presents a data-driven contrastive learning-based counting classifier with a modified loss function as a simple and effective approach for object counting despite significant occlusion challenges caused by robotic fingers and objects. The model was validated against other models with three different common shapes (spheres, cylinders, and cubes) in simulation and in a real setup. The proposed contrastive learning-based counting approach achieved above 96\% accuracy for all three objects in the real setup.
- Abstract(参考訳): 多目的グリップを行うロボットは、グリップ後に手にあるオブジェクトの数を検出する必要がある。
カウントは、ロボットの次の動きと、ピック・プレース・プロセス全体の結果と効率を決定する上で重要な役割を果たす。
本稿では,ロボットの指や物体による大きな閉塞問題にもかかわらず,データ駆動型コントラスト学習型カウント分類器において,オブジェクトのカウントをシンプルかつ効果的に行う手法として,ロス関数を改良した手法を提案する。
このモデルは、シミュレーションと実際の設定で3つの異なる共通形状(球体、シリンダー、立方体)を持つ他のモデルに対して検証された。
提案手法は,実環境における3つのオブジェクトすべてに対して,96\%以上の精度を実現した。
関連論文リスト
- PickScan: Object discovery and reconstruction from handheld interactions [99.99566882133179]
シーンの3次元表現を再構成する対話誘導型クラス依存型手法を開発した。
我々の主な貢献は、操作対象のインタラクションを検出し、操作対象のマスクを抽出する新しいアプローチである。
相互作用ベースとクラス非依存のベースラインであるCo-Fusionと比較すると、これはシャムファー距離の73%の減少に相当する。
論文 参考訳(メタデータ) (2024-11-17T23:09:08Z) - Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
微分可能シミュレーションは、システム識別の強力なツールとなっている。
本手法は,オブジェクト自体のデータに頼ることなく,ロボットからの情報を用いてオブジェクト特性を校正する。
低コストなロボットプラットフォームにおける本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-04T20:48:38Z) - Iterative Object Count Optimization for Text-to-image Diffusion Models [59.03672816121209]
画像とテキストのペアから学ぶ現在のモデルは、本質的にカウントに苦慮している。
本稿では,物体のポテンシャルを集計する計数モデルから得られた計数損失に基づいて生成画像の最適化を提案する。
様々なオブジェクトの生成を評価し,精度を大幅に向上させた。
論文 参考訳(メタデータ) (2024-08-21T15:51:46Z) - simPLE: a visuotactile method learned in simulation to precisely pick,
localize, regrasp, and place objects [16.178331266949293]
本稿では,精密かつ汎用的なピック・アンド・プレイスの解法について検討する。
正確なピック・アンド・プレイスの解法としてシミュレートを提案する。
SimPLEは、オブジェクトCADモデルのみを前提に、オブジェクトの選択、再彫刻、配置を正確に学習する。
論文 参考訳(メタデータ) (2023-07-24T21:22:58Z) - Distributional Instance Segmentation: Modeling Uncertainty and High
Confidence Predictions with Latent-MaskRCNN [77.0623472106488]
本稿では,潜在符号を用いた分散インスタンス分割モデルのクラスについて検討する。
ロボットピッキングへの応用として,高い精度を実現するための信頼性マスク手法を提案する。
本手法は,新たにリリースした曖昧なシーンのデータセットを含め,ロボットシステムにおける致命的なエラーを著しく低減できることを示す。
論文 参考訳(メタデータ) (2023-05-03T05:57:29Z) - Self-Supervised Interactive Object Segmentation Through a
Singulation-and-Grasping Approach [9.029861710944704]
本稿では,新しいオブジェクトと対話し,各オブジェクトのトレーニングラベルを収集するロボット学習手法を提案する。
Singulation-and-Grasping(SaG)ポリシは、エンドツーエンドの強化学習を通じてトレーニングされる。
本システムは,シミュレートされた散文シーンにおいて,70%の歌唱成功率を達成する。
論文 参考訳(メタデータ) (2022-07-19T15:01:36Z) - Efficient and Robust Training of Dense Object Nets for Multi-Object
Robot Manipulation [8.321536457963655]
我々はDense Object Nets(DON)の堅牢で効率的なトレーニングのためのフレームワークを提案する。
本研究は,多目的データを用いた学習に重点を置いている。
実世界のロボットによる把握作業において,提案手法の頑健さと精度を実証する。
論文 参考訳(メタデータ) (2022-06-24T08:24:42Z) - Lifelong Ensemble Learning based on Multiple Representations for
Few-Shot Object Recognition [6.282068591820947]
本稿では,複数表現に基づく一生涯のアンサンブル学習手法を提案する。
生涯学習を容易にするため、各アプローチは、オブジェクト情報を即座に保存して検索するメモリユニットを備える。
提案手法の有効性を,オフラインおよびオープンエンドシナリオで評価するために,幅広い実験を行った。
論文 参考訳(メタデータ) (2022-05-04T10:29:10Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
本稿では,物理に基づくメタバース合成による視覚駆動型ロボットグルーピングのための大規模ベンチマークデータセットを提案する。
提案するデータセットには,10万の画像と25種類のオブジェクトが含まれている。
また,オブジェクト検出とセグメンテーション性能を評価するためのデータセットとともに,新しいレイアウト重み付け性能指標を提案する。
論文 参考訳(メタデータ) (2021-12-29T17:23:24Z) - Towards Robotic Assembly by Predicting Robust, Precise and Task-oriented
Grasps [17.07993278175686]
本稿では,3つのカスケードネットワークを学習することで,把握,精度,タスク性能を最適化する手法を提案する。
我々は,歯車をペグに挿入し,ブラケットをコーナーにアライメントし,形状をスロットに挿入する3つの一般的な組立作業のシミュレーションにおいて,本手法の評価を行った。
論文 参考訳(メタデータ) (2020-11-04T18:29:01Z) - A robot that counts like a child: a developmental model of counting and
pointing [69.26619423111092]
実物を数えることができる新しい神経ロボティクスモデルを導入する。
このモデルにより,エンボディメントと数値認識の相互作用を調べることができる。
トレーニングされたモデルは、アイテムのセットをカウントすることができ、同時にそれらを指し示します。
論文 参考訳(メタデータ) (2020-08-05T21:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。