Federated learning model for predicting major postoperative complications
- URL: http://arxiv.org/abs/2404.06641v1
- Date: Tue, 9 Apr 2024 22:31:10 GMT
- Title: Federated learning model for predicting major postoperative complications
- Authors: Yonggi Park, Yuanfang Ren, Benjamin Shickel, Ziyuan Guan, Ayush Patela, Yingbo Ma, Zhenhong Hu, Tyler J. Loftus, Parisa Rashidi, Tezcan Ozrazgat-Baslanti, Azra Bihorac,
- Abstract summary: We developed federated learning models to predict nine major postoperative complications.
We compared federated learning models with local learning models trained on a single site and central learning models trained on pooled dataset from two centers.
Our federated learning model obtained comparable performance to the best local learning model at each center, demonstrating strong generalizability.
- Score: 2.565552377354702
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Background: The accurate prediction of postoperative complication risk using Electronic Health Records (EHR) and artificial intelligence shows great potential. Training a robust artificial intelligence model typically requires large-scale and diverse datasets. In reality, collecting medical data often encounters challenges surrounding privacy protection. Methods: This retrospective cohort study includes adult patients who were admitted to UFH Gainesville (GNV) (n = 79,850) and Jacksonville (JAX) (n = 28,636) for any type of inpatient surgical procedure. Using perioperative and intraoperative features, we developed federated learning models to predict nine major postoperative complications (i.e., prolonged intensive care unit stay and mechanical ventilation). We compared federated learning models with local learning models trained on a single site and central learning models trained on pooled dataset from two centers. Results: Our federated learning models achieved the area under the receiver operating characteristics curve (AUROC) values ranged from 0.81 for wound complications to 0.92 for prolonged ICU stay at UFH GNV center. At UFH JAX center, these values ranged from 0.73-0.74 for wound complications to 0.92-0.93 for hospital mortality. Federated learning models achieved comparable AUROC performance to central learning models, except for prolonged ICU stay, where the performance of federated learning models was slightly higher than central learning models at UFH GNV center, but slightly lower at UFH JAX center. In addition, our federated learning model obtained comparable performance to the best local learning model at each center, demonstrating strong generalizability. Conclusion: Federated learning is shown to be a useful tool to train robust and generalizable models from large scale data across multiple institutions where data protection barriers are high.
Related papers
- Multicenter Privacy-Preserving Model Training for Deep Learning Brain Metastases Autosegmentation [2.479757014250359]
This work aims to explore the impact of multicenter data heterogeneity on deep learning brain metastases (BM) autosegmentation performance.
incremental transfer learning technique, namely learning without forgetting (LWF), to improve model generalizability without sharing raw data.
When the UKER pretrained model is applied to USZ, LWF achieves a higher average F1 score (0.839) than naive TL (0.570) and single-center training (0.688) on combined UKER and USZ test data.
arXiv Detail & Related papers (2024-05-17T16:01:11Z) - Acute kidney injury prediction for non-critical care patients: a
retrospective external and internal validation study [1.7667281678430398]
Acute kidney injury (AKI) occurs in up to 18% of hospitalized admissions.
Deep learning and conventional machine learning models were developed to predict AKI progression.
Models showed slightly reduced discrimination when tested on another institution.
arXiv Detail & Related papers (2024-02-06T18:05:30Z) - A Federated Learning Framework for Stenosis Detection [70.27581181445329]
This study explores the use of Federated Learning (FL) for stenosis detection in coronary angiography images (CA)
Two heterogeneous datasets from two institutions were considered: dataset 1 includes 1219 images from 200 patients, which we acquired at the Ospedale Riuniti of Ancona (Italy)
dataset 2 includes 7492 sequential images from 90 patients from a previous study available in the literature.
arXiv Detail & Related papers (2023-10-30T11:13:40Z) - From Single-Hospital to Multi-Centre Applications: Enhancing the
Generalisability of Deep Learning Models for Adverse Event Prediction in the
ICU [0.0]
Deep learning (DL) can aid doctors in detecting worsening patient states early, affording them time to react and prevent bad outcomes.
While DL-based early warning models usually work well in the hospitals they were trained for, they tend to be less reliable when applied at new hospitals.
We systematically assessed the reliability of DL models for three common adverse events: death, acute kidney injury (AKI), and sepsis.
We found that models achieved high AUROC for mortality (0.838-0.869), AKI (0.823-0.866), and sepsis (0.749-0.824) at the training hospital.
arXiv Detail & Related papers (2023-03-27T16:13:54Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
We launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution.
Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK.
arXiv Detail & Related papers (2021-11-18T00:43:41Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
Deep learning (DL) classification models were trained to identify COVID-19-positive patients on 3D computed tomography (CT) datasets from different countries.
We trained nine identical DL-based classification models by using combinations of the datasets with a 72% train, 8% validation, and 20% test data split.
The models trained on multiple datasets and evaluated on a test set from one of the datasets used for training performed better.
arXiv Detail & Related papers (2021-02-18T21:14:52Z) - A Machine Learning Early Warning System: Multicenter Validation in
Brazilian Hospitals [4.659599449441919]
Early recognition of clinical deterioration is one of the main steps for reducing inpatient morbidity and mortality.
Since hospital wards are given less attention compared to the Intensive Care Unit, ICU, we hypothesized that when a platform is connected to a stream of EHR, there would be a drastic improvement in dangerous situations awareness.
With the application of machine learning, the system is capable to consider all patient's history and through the use of high-performing predictive models, an intelligent early warning system is enabled.
arXiv Detail & Related papers (2020-06-09T21:21:38Z) - Interpretable Machine Learning Model for Early Prediction of Mortality
in Elderly Patients with Multiple Organ Dysfunction Syndrome (MODS): a
Multicenter Retrospective Study and Cross Validation [9.808639780672156]
Elderly patients with MODS have high risk of death and poor prognosis.
This study aims to develop an interpretable and generalizable model for early mortality prediction in elderly patients with MODS.
arXiv Detail & Related papers (2020-01-28T17:15:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.