RULER: What's the Real Context Size of Your Long-Context Language Models?
- URL: http://arxiv.org/abs/2404.06654v3
- Date: Tue, 6 Aug 2024 21:48:58 GMT
- Title: RULER: What's the Real Context Size of Your Long-Context Language Models?
- Authors: Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang, Boris Ginsburg,
- Abstract summary: We create a new benchmark for evaluating long-context language models (LMs)
We evaluate 17 long-context LMs with 13 representative tasks in RULER.
Almost all models exhibit large performance drops as the context length increases.
- Score: 23.220973811374225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The needle-in-a-haystack (NIAH) test, which examines the ability to retrieve a piece of information (the "needle") from long distractor texts (the "haystack"), has been widely adopted to evaluate long-context language models (LMs). However, this simple retrieval-based test is indicative of only a superficial form of long-context understanding. To provide a more comprehensive evaluation of long-context LMs, we create a new synthetic benchmark RULER with flexible configurations for customized sequence length and task complexity. RULER expands upon the vanilla NIAH test to encompass variations with diverse types and quantities of needles. Moreover, RULER introduces new task categories multi-hop tracing and aggregation to test behaviors beyond searching from context. We evaluate 17 long-context LMs with 13 representative tasks in RULER. Despite achieving nearly perfect accuracy in the vanilla NIAH test, almost all models exhibit large performance drops as the context length increases. While these models all claim context sizes of 32K tokens or greater, only half of them can maintain satisfactory performance at the length of 32K. Our analysis of Yi-34B, which supports context length of 200K, reveals large room for improvement as we increase input length and task complexity. We open source RULER to spur comprehensive evaluation of long-context LMs.
Related papers
- How to Train Long-Context Language Models (Effectively) [75.5418485597276]
We study continued training and supervised fine-tuning (SFT) of a language model (LM) to make effective use of long-context information.
ProLong-8B, which is from Llama-3 and trained on 40B tokens, demonstrates state-of-the-art long-context performance among similarly sized models at a length of 128K.
arXiv Detail & Related papers (2024-10-03T16:46:52Z) - LongGenBench: Benchmarking Long-Form Generation in Long Context LLMs [4.4965596747053]
Long-form text generation is critical for applications such as design proposals and creative writing.
New long-form text evaluation benchmark, LongGenBench, tests models' ability to identify specific events within generated long text sequences.
arXiv Detail & Related papers (2024-09-03T17:25:54Z) - ChatQA 2: Bridging the Gap to Proprietary LLMs in Long Context and RAG Capabilities [53.97515452727115]
ChatQA 2 is a Llama 3.0-based model with a 128K context window.
We present a training recipe to extend the context window of Llama3-70B-base from 8K to 128K tokens.
Our results demonstrate that the Llama3-ChatQA-2-70B model outperforms most existing state-of-the-art models.
arXiv Detail & Related papers (2024-07-19T17:35:47Z) - NeedleBench: Can LLMs Do Retrieval and Reasoning in 1 Million Context Window? [37.64593022203498]
NeedleBench is a framework consisting of progressively more challenging tasks for assessing bilingual long-context capabilities.
We use the framework to assess how well the leading open-source models can identify key information relevant to the question.
We propose the Ancestral Trace Challenge to mimic the complexity of logical reasoning challenges that are likely to be present in real-world long-context tasks.
arXiv Detail & Related papers (2024-07-16T17:59:06Z) - Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA [71.04146366608904]
Long-context modeling capabilities have garnered widespread attention, leading to the emergence of Large Language Models (LLMs) with ultra-context windows.
We propose a novel long-context benchmark, Loong, aligning with realistic scenarios through extended multi-document question answering (QA)
Loong introduces four types of tasks with a range of context lengths: Spotlight Locating, Comparison, Clustering, and Chain of Reasoning.
arXiv Detail & Related papers (2024-06-25T09:42:56Z) - BABILong: Testing the Limits of LLMs with Long Context Reasoning-in-a-Haystack [4.3482088816575155]
We introduce the BABILong benchmark, designed to test language models' ability to reason across facts distributed in long documents.
BABILong includes a diverse set of 20 reasoning tasks, including fact chaining, simple induction, deduction, counting, and handling lists/sets.
Our evaluations show that popular LLMs effectively utilize only 10-20% of the context and their performance declines sharply with increased reasoning complexity.
arXiv Detail & Related papers (2024-06-14T16:00:29Z) - Ada-LEval: Evaluating long-context LLMs with length-adaptable benchmarks [76.43527940649939]
We introduce Ada-LEval, a benchmark for evaluating the long-context understanding of large language models (LLMs)
Ada-LEval includes two challenging subsets, TSort and BestAnswer, which enable a more reliable evaluation of LLMs' long context capabilities.
We evaluate 4 state-of-the-art closed-source API models and 6 open-source models with Ada-LEval.
arXiv Detail & Related papers (2024-04-09T17:30:48Z) - XL$^2$Bench: A Benchmark for Extremely Long Context Understanding with Long-range Dependencies [45.31042312867939]
Large Language Models (LLMs) have demonstrated remarkable performance across diverse tasks but are constrained by their small context window sizes.
Various efforts have been proposed to expand the context window to accommodate even up to 200K input tokens.
We introduce a benchmark for extremely long context understanding with long-range dependencies, XL$2$Bench.
arXiv Detail & Related papers (2024-04-08T12:29:07Z) - NovelQA: Benchmarking Question Answering on Documents Exceeding 200K Tokens [63.7488938083696]
NovelQA is a benchmark designed to test the capabilities of Large Language Models with extended texts.
This paper presents the design and construction of NovelQA, highlighting its manual annotation, and diverse question types.
Our evaluation of Long-context LLMs on NovelQA reveals significant insights into the models' performance.
arXiv Detail & Related papers (2024-03-18T17:32:32Z) - Effective Long-Context Scaling of Foundation Models [90.57254298730923]
We present a series of long-context LLMs that support effective context windows of up to 32,768 tokens.
Our models achieve consistent improvements on most regular tasks and significant improvements on long-context tasks over Llama 2.
arXiv Detail & Related papers (2023-09-27T21:41:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.