論文の概要: Causal Unit Selection using Tractable Arithmetic Circuits
- arxiv url: http://arxiv.org/abs/2404.06681v1
- Date: Wed, 10 Apr 2024 02:02:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 15:49:13.620224
- Title: Causal Unit Selection using Tractable Arithmetic Circuits
- Title(参考訳): トラクタブル算術回路を用いた因果単位選択
- Authors: Haiying Huang, Adnan Darwiche,
- Abstract要約: 制約木幅によって必ずしも制限されない単位選択に対する新しいアプローチを導入する。
これはメタモデルを特別な計算回路のクラスにコンパイルすることで実現される。
- 参考スコア(独自算出の注目度): 12.223629720083148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The unit selection problem aims to find objects, called units, that optimize a causal objective function which describes the objects' behavior in a causal context (e.g., selecting customers who are about to churn but would most likely change their mind if encouraged). While early studies focused mainly on bounding a specific class of counterfactual objective functions using data, more recent work allows one to find optimal units exactly by reducing the causal objective to a classical objective on a meta-model, and then applying a variant of the classical Variable Elimination (VE) algorithm to the meta-model -- assuming a fully specified causal model is available. In practice, however, finding optimal units using this approach can be very expensive because the used VE algorithm must be exponential in the constrained treewidth of the meta-model, which is larger and denser than the original model. We address this computational challenge by introducing a new approach for unit selection that is not necessarily limited by the constrained treewidth. This is done through compiling the meta-model into a special class of tractable arithmetic circuits that allows the computation of optimal units in time linear in the circuit size. We finally present empirical results on random causal models that show order-of-magnitude speedups based on the proposed method for solving unit selection.
- Abstract(参考訳): ユニット選択問題は、因果的コンテキストにおけるオブジェクトの振る舞いを記述する因果的目的関数を最適化する、ユニットと呼ばれるオブジェクトを見つけることを目的としている(例えば、混乱しようとしている顧客を選択するが、奨励された場合、考えを変える可能性が高い)。
初期の研究は、主にデータを使って特定の対物目的関数のクラスを束縛することに焦点を当てていたが、より最近の研究は、メタモデル上の古典的対象に対する因果的目的を正確に減らし、メタモデルに古典的可変除去(VE)アルゴリズムの変種を適用することで、完全に指定された因果的モデルが利用可能であると仮定することで、最適な単位を見つけることができる。
しかし、実際には、この手法を用いて最適な単位を見つけるのは非常にコストがかかる。なぜなら、使用済みのVEアルゴリズムは、元のモデルよりも大きく密度の高いメタモデルの制約木幅で指数関数的である必要があるからである。
制約木幅によって必ずしも制限されないユニット選択に対する新しいアプローチを導入することで、この計算課題に対処する。
これはメタモデルを特別に計算可能な演算回路にコンパイルすることで実現され、回路サイズに線形な時間で最適な単位の計算が可能となる。
提案手法を応用したランダム因果モデルに対する実験結果について述べる。
関連論文リスト
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
我々は、1.8万のデータポイントでトレーニングされた計算対応GPのモデル選択が、1つのGPU上で数時間以内に可能であることを示す。
この研究の結果、ガウス過程は、不確実性を定量化する能力を著しく妥協することなく、大規模なデータセットで訓練することができる。
論文 参考訳(メタデータ) (2024-11-01T21:11:48Z) - Outer Approximation and Super-modular Cuts for Constrained Assortment Optimization under Mixed-Logit Model [6.123324869194196]
混合ロジット顧客選択モデルに基づくアソシエーション最適化問題について検討する。
既存の正確な手法は、主にMILP (mixed-integer linear programming) やCONIC (Second-order cone) の修正に依存している。
我々の研究は、単調に超モジュラーかつ凸であることを示す客観的関数の成分に焦点をあてることによって、この問題に対処する。
論文 参考訳(メタデータ) (2024-07-26T06:27:11Z) - A Data-Driven State Aggregation Approach for Dynamic Discrete Choice
Models [7.7347261505610865]
本稿では,状態の選択と集約のためのデータ駆動型手法を提案する。
提案した2段階のアプローチは,問題次元を減らして次元の呪いを緩和する。
2つの古典的動的離散的選択推定法におけるアルゴリズムの実証的性能を実証する。
論文 参考訳(メタデータ) (2023-04-11T01:07:24Z) - An Algorithm and Complexity Results for Causal Unit Selection [16.307996243413967]
単位選択問題は、刺激を受ける際に望ましい振る舞いを示す可能性が最も高い、単位と呼ばれる物体を特定することを目的としている。
本稿では,幅広い因果的目的関数のクラスと完全に定義された構造因果的モデルに与えられた最適単位を求めるための,最初の正確なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-28T08:46:51Z) - Fast Feature Selection with Fairness Constraints [49.142308856826396]
モデル構築における最適特徴の選択に関する基礎的問題について検討する。
この問題は、greedyアルゴリズムの変種を使用しても、大規模なデータセットで計算的に困難である。
適応クエリモデルは,最近提案された非モジュラー関数に対する直交整合探索のより高速なパラダイムに拡張する。
提案アルゴリズムは、適応型クエリモデルにおいて指数関数的に高速な並列実行を実現する。
論文 参考訳(メタデータ) (2022-02-28T12:26:47Z) - Approximate Bayesian Optimisation for Neural Networks [6.921210544516486]
モデル選択の重要性を強調するために、機械学習アルゴリズムを自動化するための一連の作業が行われた。
理想主義的な方法で解析的トラクタビリティと計算可能性を解決する必要性は、効率と適用性を確保することを可能にしている。
論文 参考訳(メタデータ) (2021-08-27T19:03:32Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
本稿では,モデル選択の課題を解決するために,新しいベイズ最適化(BO)アルゴリズムを提案する。
結果として得られる複数のブラックボックス関数の最適化問題を協調的かつ効率的に解くために,ブラックボックス関数間の潜在的な相関を利用する。
我々は、シーケンス予測のための段階的モデル選択(SMS)の問題を初めて定式化し、この目的のために効率的な共同学習アルゴリズムを設計し、実証する。
論文 参考訳(メタデータ) (2020-01-12T09:42:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。