CrimeAlarm: Towards Intensive Intent Dynamics in Fine-grained Crime Prediction
- URL: http://arxiv.org/abs/2404.06756v1
- Date: Wed, 10 Apr 2024 05:44:28 GMT
- Title: CrimeAlarm: Towards Intensive Intent Dynamics in Fine-grained Crime Prediction
- Authors: Kaixi Hu, Lin Li, Qing Xie, Xiaohui Tao, Guandong Xu,
- Abstract summary: This paper proposes a fine-grained sequential crime prediction framework, CrimeAlarm, that equips with a novel mutual distillation strategy inspired by curriculum learning.
Experiments show that CrimeAlarm outperforms state-of-the-art methods in terms of NDCG@5, with improvements of 4.51% for the NYC16 and 7.73% for the CHI18 in accuracy measures.
- Score: 18.978423228112856
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Granularity and accuracy are two crucial factors for crime event prediction. Within fine-grained event classification, multiple criminal intents may alternately exhibit in preceding sequential events, and progress differently in next. Such intensive intent dynamics makes training models hard to capture unobserved intents, and thus leads to sub-optimal generalization performance, especially in the intertwining of numerous potential events. To capture comprehensive criminal intents, this paper proposes a fine-grained sequential crime prediction framework, CrimeAlarm, that equips with a novel mutual distillation strategy inspired by curriculum learning. During the early training phase, spot-shared criminal intents are captured through high-confidence sequence samples. In the later phase, spot-specific intents are gradually learned by increasing the contribution of low-confidence sequences. Meanwhile, the output probability distributions are reciprocally learned between prediction networks to model unobserved criminal intents. Extensive experiments show that CrimeAlarm outperforms state-of-the-art methods in terms of NDCG@5, with improvements of 4.51% for the NYC16 and 7.73% for the CHI18 in accuracy measures.
Related papers
- Crime Prediction Using Machine Learning and Deep Learning: A Systematic
Review and Future Directions [2.624902795082451]
This review paper examines over 150 articles to explore the various machine learning and deep learning algorithms applied to predict crime.
The study provides access to the datasets used for crime prediction by researchers.
The paper highlights potential gaps and future directions that can enhance the accuracy of crime prediction.
arXiv Detail & Related papers (2023-03-28T21:07:42Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
The goal of sequential event prediction is to estimate the next event based on a sequence of historical events.
In practice, the next-event prediction models are trained with sequential data collected at one time.
We propose a framework with hierarchical branching structures for learning context-specific representations.
arXiv Detail & Related papers (2022-10-24T07:54:13Z) - Spatial-Temporal Meta-path Guided Explainable Crime Prediction [40.03641583647572]
We present a Spatial-Temporal Metapath guided Explainable Crime prediction (STMEC) framework to capture dynamic patterns of crime behaviours.
We show the superiority of STMEC compared with other advancedtemporal models, especially in predicting felonies.
arXiv Detail & Related papers (2022-05-04T05:42:23Z) - Spatial-Temporal Hypergraph Self-Supervised Learning for Crime
Prediction [60.508960752148454]
This work proposes a Spatial-Temporal Hypergraph Self-Supervised Learning framework to tackle the label scarcity issue in crime prediction.
We propose the cross-region hypergraph structure learning to encode region-wise crime dependency under the entire urban space.
We also design the dual-stage self-supervised learning paradigm, to not only jointly capture local- and global-level spatial-temporal crime patterns, but also supplement the sparse crime representation by augmenting region self-discrimination.
arXiv Detail & Related papers (2022-04-18T23:46:01Z) - Explainable Machine Learning for Predicting Homicide Clearance in the
United States [0.0]
This study explores the potential of Explainable Machine Learning in the prediction and detection of drivers of cleared homicides at the national- and state-levels in the United States.
Nine algorithmic approaches are compared to assess the best performance in predicting cleared homicides country-wise.
The most accurate algorithm among all (XGBoost) is then used for predicting clearance outcomes state-wise.
arXiv Detail & Related papers (2022-03-09T14:35:12Z) - The effect of differential victim crime reporting on predictive policing
systems [84.86615754515252]
We show how differential victim crime reporting rates can lead to outcome disparities in common crime hot spot prediction models.
Our results suggest that differential crime reporting rates can lead to a displacement of predicted hotspots from high crime but low reporting areas to high or medium crime and high reporting areas.
arXiv Detail & Related papers (2021-01-30T01:57:22Z) - AIST: An Interpretable Attention-based Deep Learning Model for Crime
Prediction [0.30458514384586394]
We develop AIST, an Attention-based Interpretable S Temporal Network for crime prediction.
AIST models the dynamic spatial dependency and temporal patterns of a specific crime category.
Experiments show the superiority of our model in terms of both accuracy and interpretability using real datasets.
arXiv Detail & Related papers (2020-12-16T03:01:15Z) - Adversarial Refinement Network for Human Motion Prediction [61.50462663314644]
Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough motion trend.
We propose an Adversarial Refinement Network (ARNet) following a simple yet effective coarse-to-fine mechanism with novel adversarial error augmentation.
arXiv Detail & Related papers (2020-11-23T05:42:20Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
Recent work has shown that, when integrated with adversarial training, self-supervised pre-training can lead to state-of-the-art robustness.
We improve robustness-aware self-supervised pre-training by learning representations consistent under both data augmentations and adversarial perturbations.
arXiv Detail & Related papers (2020-10-26T04:44:43Z) - Exploring Spatio-Temporal and Cross-Type Correlations for Crime
Prediction [48.1813701535167]
We perform crime prediction exploiting the cross-type and-temporal correlations of urban crimes.
We propose a coherent framework to mathematically model these correlations for crime prediction.
Further experiments have been conducted to understand the importance of different correlations in crime prediction.
arXiv Detail & Related papers (2020-01-20T00:34:53Z) - A Comparative Study on Crime in Denver City Based on Machine Learning
and Data Mining [0.0]
I analyzed a real-world crime and accident dataset of Denver county, USA, from January 2014 to May 2019.
This project aims to predict and highlights the trends of occurrence that will, in return, support the law enforcement agencies and government to discover the preventive measures.
The outcomes are captured using two popular test methods: train-test split, and k-fold crossvalidation.
arXiv Detail & Related papers (2020-01-09T01:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.