Private Wasserstein Distance with Random Noises
- URL: http://arxiv.org/abs/2404.06787v1
- Date: Wed, 10 Apr 2024 06:58:58 GMT
- Title: Private Wasserstein Distance with Random Noises
- Authors: Wenqian Li, Haozhi Wang, Zhe Huang, Yan Pang,
- Abstract summary: We investigate the underlying triangular properties within the Wasserstein space, leading to a straightforward solution named TriangleWad.
TriangleWad is 20 times faster, making raw data information truly invisible, enhancing resilience against attacks, and without sacrificing estimation accuracy.
- Score: 7.459793194754823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wasserstein distance is a principle measure of data divergence from a distributional standpoint. However, its application becomes challenging in the context of data privacy, where sharing raw data is restricted. Prior attempts have employed techniques like Differential Privacy or Federated optimization to approximate Wasserstein distance. Nevertheless, these approaches often lack accuracy and robustness against potential attack. In this study, we investigate the underlying triangular properties within the Wasserstein space, leading to a straightforward solution named TriangleWad. This approach enables the computation of Wasserstein distance between datasets stored across different entities. Notably, TriangleWad is 20 times faster, making raw data information truly invisible, enhancing resilience against attacks, and without sacrificing estimation accuracy. Through comprehensive experimentation across various tasks involving both image and text data, we demonstrate its superior performance and generalizations.
Related papers
- Federated Wasserstein Distance [16.892296712204597]
We introduce a principled way of computing the Wasserstein distance between two distributions in a federated manner.
We show how to estimate the Wasserstein distance between two samples stored and kept on different devices/clients whilst a central entity/server orchestrates the computations.
arXiv Detail & Related papers (2023-10-03T11:30:50Z) - Wasserstein Adversarial Examples on Univariant Time Series Data [23.15675721397447]
We propose adversarial examples in the Wasserstein space for time series data.
We use Wasserstein distance to bound the perturbation between normal examples and adversarial examples.
We empirically evaluate the proposed attack on several time series datasets in the healthcare domain.
arXiv Detail & Related papers (2023-03-22T07:50:15Z) - Statistical, Robustness, and Computational Guarantees for Sliced
Wasserstein Distances [18.9717974398864]
Sliced Wasserstein distances preserve properties of classic Wasserstein distances while being more scalable for computation and estimation in high dimensions.
We quantify this scalability from three key aspects: (i) empirical convergence rates; (ii) robustness to data contamination; and (iii) efficient computational methods.
arXiv Detail & Related papers (2022-10-17T15:04:51Z) - Exact Statistical Inference for the Wasserstein Distance by Selective
Inference [20.309302270008146]
We propose an exact (non-asymptotic) inference method for the Wasserstein distance inspired by the concept of conditional Selective Inference (SI)
To our knowledge, this is the first method that can provide a valid confidence interval (CI) for the Wasserstein distance with finite-sample coverage guarantee.
We evaluate the performance of the proposed method on both synthetic and real-world datasets.
arXiv Detail & Related papers (2021-09-29T06:16:50Z) - Partial Wasserstein Covering [10.52782170493037]
We consider a general task called partial Wasserstein covering with the goal of emulating a large dataset.
We model this problem as a discrete optimization problem with partial Wasserstein divergence as an objective function.
We show that we can efficiently make two datasets similar in terms of partial Wasserstein divergence, including driving scene datasets.
arXiv Detail & Related papers (2021-06-02T01:48:41Z) - Ranking the information content of distance measures [61.754016309475745]
We introduce a statistical test that can assess the relative information retained when using two different distance measures.
This in turn allows finding the most informative distance measure out of a pool of candidates.
arXiv Detail & Related papers (2021-04-30T15:57:57Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - A One-Pass Private Sketch for Most Machine Learning Tasks [48.17461258268463]
Differential privacy (DP) is a compelling privacy definition that explains the privacy-utility tradeoff via formal, provable guarantees.
We propose a private sketch that supports a multitude of machine learning tasks including regression, classification, density estimation, and more.
Our sketch consists of randomized contingency tables that are indexed with locality-sensitive hashing and constructed with an efficient one-pass algorithm.
arXiv Detail & Related papers (2020-06-16T17:47:48Z) - Augmented Sliced Wasserstein Distances [55.028065567756066]
We propose a new family of distance metrics, called augmented sliced Wasserstein distances (ASWDs)
ASWDs are constructed by first mapping samples to higher-dimensional hypersurfaces parameterized by neural networks.
Numerical results demonstrate that the ASWD significantly outperforms other Wasserstein variants for both synthetic and real-world problems.
arXiv Detail & Related papers (2020-06-15T23:00:08Z) - Projection Robust Wasserstein Distance and Riemannian Optimization [107.93250306339694]
We show that projection robustly solidstein (PRW) is a robust variant of Wasserstein projection (WPP)
This paper provides a first step into the computation of the PRW distance and provides the links between their theory and experiments on and real data.
arXiv Detail & Related papers (2020-06-12T20:40:22Z) - Fast and Robust Comparison of Probability Measures in Heterogeneous
Spaces [62.35667646858558]
We introduce the Anchor Energy (AE) and Anchor Wasserstein (AW) distances, which are respectively the energy and Wasserstein distances instantiated on such representations.
Our main contribution is to propose a sweep line algorithm to compute AE emphexactly in log-quadratic time, where a naive implementation would be cubic.
We show that AE and AW perform well in various experimental settings at a fraction of the computational cost of popular GW approximations.
arXiv Detail & Related papers (2020-02-05T03:09:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.