Projection Robust Wasserstein Distance and Riemannian Optimization
- URL: http://arxiv.org/abs/2006.07458v9
- Date: Sun, 6 Nov 2022 23:45:44 GMT
- Title: Projection Robust Wasserstein Distance and Riemannian Optimization
- Authors: Tianyi Lin, Chenyou Fan, Nhat Ho, Marco Cuturi and Michael I. Jordan
- Abstract summary: We show that projection robustly solidstein (PRW) is a robust variant of Wasserstein projection (WPP)
This paper provides a first step into the computation of the PRW distance and provides the links between their theory and experiments on and real data.
- Score: 107.93250306339694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Projection robust Wasserstein (PRW) distance, or Wasserstein projection
pursuit (WPP), is a robust variant of the Wasserstein distance. Recent work
suggests that this quantity is more robust than the standard Wasserstein
distance, in particular when comparing probability measures in high-dimensions.
However, it is ruled out for practical application because the optimization
model is essentially non-convex and non-smooth which makes the computation
intractable. Our contribution in this paper is to revisit the original
motivation behind WPP/PRW, but take the hard route of showing that, despite its
non-convexity and lack of nonsmoothness, and even despite some hardness results
proved by~\citet{Niles-2019-Estimation} in a minimax sense, the original
formulation for PRW/WPP \textit{can} be efficiently computed in practice using
Riemannian optimization, yielding in relevant cases better behavior than its
convex relaxation. More specifically, we provide three simple algorithms with
solid theoretical guarantee on their complexity bound (one in the appendix),
and demonstrate their effectiveness and efficiency by conducing extensive
experiments on synthetic and real data. This paper provides a first step into a
computational theory of the PRW distance and provides the links between optimal
transport and Riemannian optimization.
Related papers
- Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Statistical, Robustness, and Computational Guarantees for Sliced
Wasserstein Distances [18.9717974398864]
Sliced Wasserstein distances preserve properties of classic Wasserstein distances while being more scalable for computation and estimation in high dimensions.
We quantify this scalability from three key aspects: (i) empirical convergence rates; (ii) robustness to data contamination; and (iii) efficient computational methods.
arXiv Detail & Related papers (2022-10-17T15:04:51Z) - Entropic estimation of optimal transport maps [15.685006881635209]
We develop a method for estimating the optimal map between two distributions over $mathbbRd$ with rigorous finite-sample guarantees.
We show that our estimator is easy to compute using Sinkhorn's algorithm.
arXiv Detail & Related papers (2021-09-24T14:57:26Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Continuous Wasserstein-2 Barycenter Estimation without Minimax
Optimization [94.18714844247766]
Wasserstein barycenters provide a geometric notion of the weighted average of probability measures based on optimal transport.
We present a scalable algorithm to compute Wasserstein-2 barycenters given sample access to the input measures.
arXiv Detail & Related papers (2021-02-02T21:01:13Z) - Projected Statistical Methods for Distributional Data on the Real Line
with the Wasserstein Metric [0.0]
We present a novel class of projected methods, to perform statistical analysis on a data set of probability distributions on the real line.
We focus in particular on Principal Component Analysis (PCA) and regression.
Several theoretical properties of the models are investigated and consistency is proven.
arXiv Detail & Related papers (2021-01-22T10:24:49Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
Projection robust (PR) OT seeks to maximize the OT cost between two measures by choosing a $k$-dimensional subspace onto which they can be projected.
Our first contribution is to establish several fundamental statistical properties of PR Wasserstein distances.
Next, we propose the integral PR Wasserstein (IPRW) distance as an alternative to the PRW distance, by averaging rather than optimizing on subspaces.
arXiv Detail & Related papers (2020-06-22T14:35:33Z) - Augmented Sliced Wasserstein Distances [55.028065567756066]
We propose a new family of distance metrics, called augmented sliced Wasserstein distances (ASWDs)
ASWDs are constructed by first mapping samples to higher-dimensional hypersurfaces parameterized by neural networks.
Numerical results demonstrate that the ASWD significantly outperforms other Wasserstein variants for both synthetic and real-world problems.
arXiv Detail & Related papers (2020-06-15T23:00:08Z) - Stochastic Optimization for Regularized Wasserstein Estimators [10.194798773447879]
We introduce an algorithm to solve a regularized version of the problem of Wasserstein estimators gradient, with a time per step which is sublinear in the natural dimensions.
We show that this algorithm can be extended to other tasks, including estimation of Wasserstein barycenters.
arXiv Detail & Related papers (2020-02-20T12:04:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.