論文の概要: Tuning-Free Adaptive Style Incorporation for Structure-Consistent Text-Driven Style Transfer
- arxiv url: http://arxiv.org/abs/2404.06835v1
- Date: Wed, 10 Apr 2024 08:54:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 15:00:17.618053
- Title: Tuning-Free Adaptive Style Incorporation for Structure-Consistent Text-Driven Style Transfer
- Title(参考訳): 構造一貫性のあるテキスト駆動スタイル転送のための調整自由適応型スタイルの組込み
- Authors: Yanqi Ge, Jiaqi Liu, Qingnan Fan, Xi Jiang, Ye Huang, Shuai Qin, Hong Gu, Wen Li, Lixin Duan,
- Abstract要約: テキスト駆動型スタイル転送タスク,すなわちAdaptive Style Incorporation(ASI)に対する新しいソリューションを提案する。
Siamese Cross-(SiCA)は、シングルトラックのクロスアテンションをデュアルトラック構造に分離し、コンテンツとスタイルの特徴を分離し、Adaptive Content-Style Blending (AdaBlending)モジュールは、コンテンツとスタイル情報を構造一貫性のある方法で結合する。
実験により, 構造保存とスタイリング効果の両面において, 優れた性能を示した。
- 参考スコア(独自算出の注目度): 35.565157182236014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we target the task of text-driven style transfer in the context of text-to-image (T2I) diffusion models. The main challenge is consistent structure preservation while enabling effective style transfer effects. The past approaches in this field directly concatenate the content and style prompts for a prompt-level style injection, leading to unavoidable structure distortions. In this work, we propose a novel solution to the text-driven style transfer task, namely, Adaptive Style Incorporation~(ASI), to achieve fine-grained feature-level style incorporation. It consists of the Siamese Cross-Attention~(SiCA) to decouple the single-track cross-attention to a dual-track structure to obtain separate content and style features, and the Adaptive Content-Style Blending (AdaBlending) module to couple the content and style information from a structure-consistent manner. Experimentally, our method exhibits much better performance in both structure preservation and stylized effects.
- Abstract(参考訳): 本研究では,テキスト・ツー・イメージ(T2I)拡散モデルを用いて,テキスト駆動型スタイル転送のタスクを目標とする。
主な課題は、効率的なスタイル転送効果を実現しつつ、一貫した構造保存である。
この分野における過去のアプローチは、コンテントとスタイルのプロンプトを直接結合し、プロンプトレベルのスタイルインジェクションを可能にし、避けられない構造歪みを引き起こす。
そこで本研究では,テキスト駆動型スタイル伝達タスク,すなわちAdaptive Style Incorporation~(ASI)の新たなソリューションを提案する。
Siamese Cross-Attention~(SiCA)は、シングルトラックのクロスアテンションをデュアルトラック構造に分離して、コンテンツとスタイルの特徴を分離し、Adaptive Content-Style Blending (AdaBlending)モジュールは、コンテンツとスタイル情報を構造一貫性のある方法で結合する。
実験により, 構造保存とスタイリング効果の両面において, 優れた性能を示した。
関連論文リスト
- DiffuseST: Unleashing the Capability of the Diffusion Model for Style Transfer [13.588643982359413]
スタイル転送は、スタイル画像の芸術的表現をコンテンツ画像の構造情報と融合させることを目的としている。
既存の方法は特定のネットワークを訓練したり、事前訓練されたモデルを使ってコンテンツやスタイルの特徴を学習する。
本稿では,テキスト埋め込みと空間的特徴を組み合わせた,新しい学習不要なスタイル伝達手法を提案する。
論文 参考訳(メタデータ) (2024-10-19T06:42:43Z) - FAGStyle: Feature Augmentation on Geodesic Surface for Zero-shot Text-guided Diffusion Image Style Transfer [2.3293561091456283]
イメージスタイル転送の目標は、オリジナルのコンテンツを維持しながら、スタイル参照によってガイドされたイメージをレンダリングすることである。
ゼロショットテキスト誘導拡散画像スタイル転送方式であるFAGStyleを紹介する。
提案手法は,スライディングウィンドウクロップを組み込むことにより,パッチ間の情報インタラクションを向上させる。
論文 参考訳(メタデータ) (2024-08-20T04:20:11Z) - InstantStyle-Plus: Style Transfer with Content-Preserving in Text-to-Image Generation [4.1177497612346]
スタイル転送(Style Transfer)は、視覚的なスタイルを取り入れながら、オリジナルの本質を維持するイメージを作成するために設計された革新的なプロセスである。
InstantStyle-Plusは、ターゲットスタイルをシームレスに統合しながら、オリジナルコンテンツの整合性を優先するアプローチである。
論文 参考訳(メタデータ) (2024-06-30T18:05:33Z) - ArtWeaver: Advanced Dynamic Style Integration via Diffusion Model [73.95608242322949]
Stylized Text-to-Image Generation (STIG)は、テキストプロンプトとスタイル参照画像から画像を生成することを目的としている。
我々は、事前訓練された安定拡散を利用して、誤解釈スタイルや一貫性のない意味論といった課題に対処する新しいフレームワーク、ArtWeaverを提案する。
論文 参考訳(メタデータ) (2024-05-24T07:19:40Z) - Style Aligned Image Generation via Shared Attention [61.121465570763085]
本稿では,一連の生成画像間のスタイルアライメントを確立する技術であるStyleAlignedを紹介する。
拡散過程において、最小限の注意共有を生かして、T2Iモデル内の画像間のスタイル整合性を維持する。
本手法は,多種多様なスタイルやテキストのプロンプトにまたがって評価を行い,高品質で忠実であることを示す。
論文 参考訳(メタデータ) (2023-12-04T18:55:35Z) - ParaGuide: Guided Diffusion Paraphrasers for Plug-and-Play Textual Style
Transfer [57.6482608202409]
テキストスタイル転送は、意味を保ちながらテキストのスタイル特性を変換するタスクである。
任意のスタイルに柔軟に適応できる汎用型転送のための新しい拡散型フレームワークを提案する。
本研究では,人的評価と自動評価の両面から,Enron Email Corpusの手法を検証するとともに,形式性,感情,さらにはオーサシップスタイルの伝達にも優れることを示す。
論文 参考訳(メタデータ) (2023-08-29T17:36:02Z) - MSSRNet: Manipulating Sequential Style Representation for Unsupervised
Text Style Transfer [82.37710853235535]
教師なしのテキストスタイル転送タスクは、メインのコンテンツを保持しながらテキストをターゲットのスタイルに書き換えることを目的としている。
従来の方法では、固定サイズのベクトルを使ってテキストスタイルを規制するが、個々のトークンのスタイル強度を正確に伝達することは困難である。
提案手法は,テキスト中の各トークンに個々のスタイルベクトルを割り当てることでこの問題に対処する。
論文 参考訳(メタデータ) (2023-06-12T13:12:29Z) - DiffStyler: Controllable Dual Diffusion for Text-Driven Image
Stylization [66.42741426640633]
DiffStylerは、拡散された結果の内容とスタイルのバランスを制御するための二重拡散処理アーキテクチャである。
本稿では、逆復調処理をベースとしたコンテンツ画像に基づく学習可能なノイズを提案し、そのスタイリング結果により、コンテンツ画像の構造情報をよりよく保存する。
論文 参考訳(メタデータ) (2022-11-19T12:30:44Z) - Contextual Text Style Transfer [73.66285813595616]
コンテキストテキストスタイル転送は、文をその周囲のコンテキストを考慮した所望のスタイルに変換することを目的としている。
本稿では,各入力文とその周辺コンテキストに対して2つの異なるエンコーダを使用するコンテキスト認識スタイル転送(CAST)モデルを提案する。
Enron-ContextとReddit-Contextという2つの新しいベンチマークが、フォーマル性と攻撃性スタイルの転送のために導入された。
論文 参考訳(メタデータ) (2020-04-30T23:01:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。