RESSCAL3D: Resolution Scalable 3D Semantic Segmentation of Point Clouds
- URL: http://arxiv.org/abs/2404.06863v1
- Date: Wed, 10 Apr 2024 09:40:56 GMT
- Title: RESSCAL3D: Resolution Scalable 3D Semantic Segmentation of Point Clouds
- Authors: Remco Royen, Adrian Munteanu,
- Abstract summary: In this work, we introduce a novel architecture, dubbed RESSCAL3D, providing resolution-scalable 3D semantic segmentation of point clouds.
Once a low-resolution version of the input point cloud is available, first semantic predictions can be generated in an extremely fast manner.
Our experiments show that RESSCAL3D is 31-62% faster than the non-scalable baseline.
- Score: 7.453881927237143
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While deep learning-based methods have demonstrated outstanding results in numerous domains, some important functionalities are missing. Resolution scalability is one of them. In this work, we introduce a novel architecture, dubbed RESSCAL3D, providing resolution-scalable 3D semantic segmentation of point clouds. In contrast to existing works, the proposed method does not require the whole point cloud to be available to start inference. Once a low-resolution version of the input point cloud is available, first semantic predictions can be generated in an extremely fast manner. This enables early decision-making in subsequent processing steps. As additional points become available, these are processed in parallel. To improve performance, features from previously computed scales are employed as prior knowledge at the current scale. Our experiments show that RESSCAL3D is 31-62% faster than the non-scalable baseline while keeping a limited impact on performance. To the best of our knowledge, the proposed method is the first to propose a resolution-scalable approach for 3D semantic segmentation of point clouds based on deep learning.
Related papers
- Multi-modality Affinity Inference for Weakly Supervised 3D Semantic
Segmentation [47.81638388980828]
We propose a simple yet effective scene-level weakly supervised point cloud segmentation method with a newly introduced multi-modality point affinity inference module.
Our method outperforms the state-of-the-art by 4% to 6% mIoU on the ScanNet and S3DIS benchmarks.
arXiv Detail & Related papers (2023-12-27T14:01:35Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
We propose a clustering based supervised learning scheme for point cloud analysis.
Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space.
Our algorithm shows notable improvements on famous point cloud segmentation datasets.
arXiv Detail & Related papers (2023-07-27T03:42:12Z) - Few-Shot 3D Point Cloud Semantic Segmentation via Stratified
Class-Specific Attention Based Transformer Network [22.9434434107516]
We develop a new multi-layer transformer network for few-shot point cloud semantic segmentation.
Our method achieves the new state-of-the-art performance, with 15% less inference time, over existing few-shot 3D point cloud segmentation models.
arXiv Detail & Related papers (2023-03-28T00:27:54Z) - ALSO: Automotive Lidar Self-supervision by Occupancy estimation [70.70557577874155]
We propose a new self-supervised method for pre-training the backbone of deep perception models operating on point clouds.
The core idea is to train the model on a pretext task which is the reconstruction of the surface on which the 3D points are sampled.
The intuition is that if the network is able to reconstruct the scene surface, given only sparse input points, then it probably also captures some fragments of semantic information.
arXiv Detail & Related papers (2022-12-12T13:10:19Z) - PointResNet: Residual Network for 3D Point Cloud Segmentation and
Classification [18.466814193413487]
Point cloud segmentation and classification are some of the primary tasks in 3D computer vision.
In this paper, we propose PointResNet, a residual block-based approach.
Our model directly processes the 3D points, using a deep neural network for the segmentation and classification tasks.
arXiv Detail & Related papers (2022-11-20T17:39:48Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - Revisiting Point Cloud Simplification: A Learnable Feature Preserving
Approach [57.67932970472768]
Mesh and Point Cloud simplification methods aim to reduce the complexity of 3D models while retaining visual quality and relevant salient features.
We propose a fast point cloud simplification method by learning to sample salient points.
The proposed method relies on a graph neural network architecture trained to select an arbitrary, user-defined, number of points from the input space and to re-arrange their positions so as to minimize the visual perception error.
arXiv Detail & Related papers (2021-09-30T10:23:55Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
We introduce RandLA-Net, an efficient and lightweight neural architecture to infer per-point semantics for large-scale point clouds.
The key to our approach is to use random point sampling instead of more complex point selection approaches.
Our RandLA-Net can process 1 million points in a single pass up to 200x faster than existing approaches.
arXiv Detail & Related papers (2021-07-06T05:08:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.