論文の概要: Efficient and Generic Point Model for Lossless Point Cloud Attribute Compression
- arxiv url: http://arxiv.org/abs/2404.06936v1
- Date: Wed, 10 Apr 2024 11:40:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 14:50:32.793067
- Title: Efficient and Generic Point Model for Lossless Point Cloud Attribute Compression
- Title(参考訳): 損失点クラウド属性圧縮のための効率的および汎用的点モデル
- Authors: Kang You, Pan Gao, Zhan Ma,
- Abstract要約: PoLoPCACは、高い圧縮効率と強力な一般化性を同時に達成する効率的で汎用的なPCAC手法である。
提案手法は,Synthetic 2k-ShapeNetデータセットでトレーニングした時に即座にデプロイできる。
実験により, 各種データセット上でのG-PCCv23よりも連続的にビットレートを低減できることがわかった。
- 参考スコア(独自算出の注目度): 28.316347464011056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The past several years have witnessed the emergence of learned point cloud compression (PCC) techniques. However, current learning-based lossless point cloud attribute compression (PCAC) methods either suffer from high computational complexity or deteriorated compression performance. Moreover, the significant variations in point cloud scale and sparsity encountered in real-world applications make developing an all-in-one neural model a challenging task. In this paper, we propose PoLoPCAC, an efficient and generic lossless PCAC method that achieves high compression efficiency and strong generalizability simultaneously. We formulate lossless PCAC as the task of inferring explicit distributions of attributes from group-wise autoregressive priors. A progressive random grouping strategy is first devised to efficiently resolve the point cloud into groups, and then the attributes of each group are modeled sequentially from accumulated antecedents. A locality-aware attention mechanism is utilized to exploit prior knowledge from context windows in parallel. Since our method directly operates on points, it can naturally avoids distortion caused by voxelization, and can be executed on point clouds with arbitrary scale and density. Experiments show that our method can be instantly deployed once trained on a Synthetic 2k-ShapeNet dataset while enjoying continuous bit-rate reduction over the latest G-PCCv23 on various datasets (ShapeNet, ScanNet, MVUB, 8iVFB). Meanwhile, our method reports shorter coding time than G-PCCv23 on the majority of sequences with a lightweight model size (2.6MB), which is highly attractive for practical applications. Dataset, code and trained model are available at https://github.com/I2-Multimedia-Lab/PoLoPCAC.
- Abstract(参考訳): 過去数年間、学習点クラウド圧縮(PCC)技術の出現を目撃してきた。
しかし、現在の学習ベースのロスレスポイントクラウド属性圧縮(PCAC)手法は、高い計算複雑性や圧縮性能の低下に悩まされている。
さらに、実世界のアプリケーションで遭遇するポイントクラウドスケールとスパシティの大きな変化は、オールインワンのニューラルモデルの開発を困難な課題にしている。
本稿では,高圧縮効率と高一般化性を同時に実現する,効率的で汎用的なロスレスPCAC法であるPoLoPCACを提案する。
損失のないPCACをグループワイド自己回帰前処理から属性の明示的な分布を推定するタスクとして定式化する。
プログレッシブ・ランダム・グルーピング・ストラテジーは、まず、ポイント・クラウドをグループに効率的に解決するために考案され、その後、各グループの属性が蓄積した先行要素から逐次モデル化される。
局所性を考慮した注意機構を用いて、コンテキストウィンドウからの事前知識を並列に活用する。
本手法は, 点上で直接動作するため, ボキセル化による歪みを自然に回避することができ, 任意のスケールと密度で点雲上で実行することができる。
実験の結果,本手法はSynthetic 2k-ShapeNetデータセット上でトレーニングした直後に,各種データセット(ShapeNet, ScanNet, MVUB, 8iVFB)上で,最新のG-PCCv23よりも連続的にビットレートの削減を享受しながら,即座に展開可能であることがわかった。
一方,本手法では,軽量なモデルサイズ(2.6MB)の配列ではG-PCCv23よりも短い符号化時間を報告している。
データセット、コード、トレーニングされたモデルはhttps://github.com/I2-Multimedia-Lab/PoLoPCACで入手できる。
関連論文リスト
- Att2CPC: Attention-Guided Lossy Attribute Compression of Point Clouds [18.244200436103156]
本稿では, オートエンコーダアーキテクチャを利用して, ポイントクラウド属性を効率よく圧縮する手法を提案する。
実験の結果,YチャネルのBD-PSNRとYUVチャネルの平均改善率は1.15dBと2.13dBであることがわかった。
論文 参考訳(メタデータ) (2024-10-23T12:32:21Z) - Point Cloud Compression with Bits-back Coding [32.9521748764196]
本稿では,深層学習に基づく確率モデルを用いて,点雲情報のシャノンエントロピーを推定する。
点雲データセットのエントロピーを推定すると、学習されたCVAEモデルを用いて点雲の幾何学的属性を圧縮する。
本手法の新規性は,CVAEの学習潜在変数モデルを用いて点雲データを圧縮することである。
論文 参考訳(メタデータ) (2024-10-09T06:34:48Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - SPAC: Sampling-based Progressive Attribute Compression for Dense Point Clouds [51.313922535437726]
本研究では,高密度点雲のエンドツーエンド圧縮法を提案する。
提案手法は,周波数サンプリングモジュール,適応スケール特徴抽出モジュール,幾何支援モジュール,大域的ハイパープライアエントロピーモデルを組み合わせた。
論文 参考訳(メタデータ) (2024-09-16T13:59:43Z) - Instance-aware Dynamic Prompt Tuning for Pre-trained Point Cloud Models [64.49254199311137]
本稿では,事前学習点クラウドモデルのための新しいインスタンス対応動的プロンプトチューニング(IDPT)戦略を提案する。
IDPTの本質は、各ポイントクラウドインスタンスのセマンティックな事前特徴を知覚する動的プロンプト生成モジュールを開発することである。
実験では、IDPTはトレーニング可能なパラメータのわずか7%で、ほとんどのタスクにおいて完全な微調整よりも優れています。
論文 参考訳(メタデータ) (2023-04-14T16:03:09Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNetは、マッピングネットワークを使用して高忠実度および3Dポイントクラウドを再構築し、生成することができる。
我々のフレームワークは、クラウドの再構築と生成タスクにおいて、様々なメトリクスで同等の最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2023-03-28T08:21:44Z) - Deep probabilistic model for lossless scalable point cloud attribute
compression [2.2559617939136505]
我々は、属性を段階的にマルチスケールの潜在空間に投影するエンドツーエンドのクラウド属性符号化法(MNeT)を構築した。
MVUB と MPEG の点群に対して本手法の有効性を検証し,提案手法が最近提案した手法よりも優れており,最新の G-PCC バージョン 14 と同等であることを示す。
論文 参考訳(メタデータ) (2023-03-11T23:39:30Z) - ECM-OPCC: Efficient Context Model for Octree-based Point Cloud
Compression [6.509720419113212]
我々は,十分に効率的なコンテキストモデルを提案し,ポイントクラウドのための効率的なディープラーニングを設計する。
具体的には、まず、自己回帰的コンテキストを活用するために、ウィンドウ制約付きマルチグループ符号化戦略を提案する。
また、その祖先と兄弟に対する現在のノードの依存性を利用するためのデュアルトランスフォーマーアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-11-20T09:20:32Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
本稿では,ニューラルネットワークガウス過程(NNGP)カーネルのランダム特徴近似(RFA)を用いた新しいアルゴリズムを提案する。
我々のアルゴリズムは、KIP上で少なくとも100倍のスピードアップを提供し、1つのGPUで実行できる。
RFA蒸留 (RFAD) と呼ばれる本手法は, 大規模データセットの精度において, KIP や他のデータセット凝縮アルゴリズムと競合して動作する。
論文 参考訳(メタデータ) (2022-10-21T15:56:13Z) - An Information Theory-inspired Strategy for Automatic Network Pruning [88.51235160841377]
深層畳み込みニューラルネットワークは、リソース制約のあるデバイスで圧縮されることがよく知られている。
既存のネットワークプルーニング手法の多くは、人的努力と禁忌な計算資源を必要とする。
本稿では,自動モデル圧縮のための情報理論に基づく戦略を提案する。
論文 参考訳(メタデータ) (2021-08-19T07:03:22Z) - Multiscale Point Cloud Geometry Compression [29.605320327889142]
本稿では,3次元ポイント・クラウド・ジオメトリを階層的に再構築するマルチスケール・ツー・エンド・ラーニング・フレームワークを提案する。
このフレームワークは、ポイントクラウド圧縮と再構成のためのスパース畳み込みベースのオートエンコーダの上に開発されている。
論文 参考訳(メタデータ) (2020-11-07T16:11:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。