Hybrid Multi-stage Decoding for Few-shot NER with Entity-aware Contrastive Learning
- URL: http://arxiv.org/abs/2404.06970v1
- Date: Wed, 10 Apr 2024 12:31:09 GMT
- Title: Hybrid Multi-stage Decoding for Few-shot NER with Entity-aware Contrastive Learning
- Authors: Peipei Liu, Gaosheng Wang, Ying Tong, Jian Liang, Zhenquan Ding, Hongsong Zhu,
- Abstract summary: Few-shot named entity recognition can identify new types of named entities based on a few labeled examples.
We propose the Hybrid Multi-stage Decoding for Few-shot NER with Entity-aware Contrastive Learning (MsFNER)
MsFNER splits the general NER into two stages: entity-span detection and entity classification.
- Score: 32.62763647036567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot named entity recognition can identify new types of named entities based on a few labeled examples. Previous methods employing token-level or span-level metric learning suffer from the computational burden and a large number of negative sample spans. In this paper, we propose the Hybrid Multi-stage Decoding for Few-shot NER with Entity-aware Contrastive Learning (MsFNER), which splits the general NER into two stages: entity-span detection and entity classification. There are 3 processes for introducing MsFNER: training, finetuning, and inference. In the training process, we train and get the best entity-span detection model and the entity classification model separately on the source domain using meta-learning, where we create a contrastive learning module to enhance entity representations for entity classification. During finetuning, we finetune the both models on the support dataset of target domain. In the inference process, for the unlabeled data, we first detect the entity-spans, then the entity-spans are jointly determined by the entity classification model and the KNN. We conduct experiments on the open FewNERD dataset and the results demonstrate the advance of MsFNER.
Related papers
- In-Context Learning for Few-Shot Nested Named Entity Recognition [53.55310639969833]
We introduce an effective and innovative ICL framework for the setting of few-shot nested NER.
We improve the ICL prompt by devising a novel example demonstration selection mechanism, EnDe retriever.
In EnDe retriever, we employ contrastive learning to perform three types of representation learning, in terms of semantic similarity, boundary similarity, and label similarity.
arXiv Detail & Related papers (2024-02-02T06:57:53Z) - Named Entity Recognition via Machine Reading Comprehension: A Multi-Task
Learning Approach [50.12455129619845]
Named Entity Recognition (NER) aims to extract and classify entity mentions in the text into pre-defined types.
We propose to incorporate the label dependencies among entity types into a multi-task learning framework for better MRC-based NER.
arXiv Detail & Related papers (2023-09-20T03:15:05Z) - PromptNER: A Prompting Method for Few-shot Named Entity Recognition via
k Nearest Neighbor Search [56.81939214465558]
We propose PromptNER: a novel prompting method for few-shot NER via k nearest neighbor search.
We use prompts that contains entity category information to construct label prototypes, which enables our model to fine-tune with only the support set.
Our approach achieves excellent transfer learning ability, and extensive experiments on the Few-NERD and CrossNER datasets demonstrate that our model achieves superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2023-05-20T15:47:59Z) - Multi-task Transformer with Relation-attention and Type-attention for
Named Entity Recognition [35.44123819012004]
Named entity recognition (NER) is an important research problem in natural language processing.
This paper proposes a multi-task Transformer, which incorporates an entity boundary detection task into the named entity recognition task.
arXiv Detail & Related papers (2023-03-20T05:11:22Z) - Nested Named Entity Recognition from Medical Texts: An Adaptive Shared
Network Architecture with Attentive CRF [53.55504611255664]
We propose a novel method, referred to as ASAC, to solve the dilemma caused by the nested phenomenon.
The proposed method contains two key modules: the adaptive shared (AS) part and the attentive conditional random field (ACRF) module.
Our model could learn better entity representations by capturing the implicit distinctions and relationships between different categories of entities.
arXiv Detail & Related papers (2022-11-09T09:23:56Z) - SpanProto: A Two-stage Span-based Prototypical Network for Few-shot
Named Entity Recognition [45.012327072558975]
Few-shot Named Entity Recognition (NER) aims to identify named entities with very little annotated data.
We propose a seminal span-based prototypical network (SpanProto) that tackles few-shot NER via a two-stage approach.
In the span extraction stage, we transform the sequential tags into a global boundary matrix, enabling the model to focus on the explicit boundary information.
For mention classification, we leverage prototypical learning to capture the semantic representations for each labeled span and make the model better adapt to novel-class entities.
arXiv Detail & Related papers (2022-10-17T12:59:33Z) - A Sequence-to-Set Network for Nested Named Entity Recognition [38.05786148160635]
We propose a novel sequence-to-set neural network for nested NER.
We use a non-autoregressive decoder to predict the final set of entities in one pass.
Experimental results show that our proposed model achieves state-of-the-art on three nested NER corpora.
arXiv Detail & Related papers (2021-05-19T03:10:04Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Adaptive Name Entity Recognition under Highly Unbalanced Data [5.575448433529451]
We present our experiments on a neural architecture composed of a Conditional Random Field (CRF) layer stacked on top of a Bi-directional LSTM (BI-LSTM) layer for solving NER tasks.
We introduce an add-on classification model to split sentences into two different sets: Weak and Strong classes and then designing a couple of Bi-LSTM-CRF models properly to optimize performance on each set.
arXiv Detail & Related papers (2020-03-10T06:56:52Z) - Zero-Resource Cross-Domain Named Entity Recognition [68.83177074227598]
Existing models for cross-domain named entity recognition rely on numerous unlabeled corpus or labeled NER training data in target domains.
We propose a cross-domain NER model that does not use any external resources.
arXiv Detail & Related papers (2020-02-14T09:04:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.