VLLMs Provide Better Context for Emotion Understanding Through Common Sense Reasoning
- URL: http://arxiv.org/abs/2404.07078v1
- Date: Wed, 10 Apr 2024 15:09:15 GMT
- Title: VLLMs Provide Better Context for Emotion Understanding Through Common Sense Reasoning
- Authors: Alexandros Xenos, Niki Maria Foteinopoulou, Ioanna Ntinou, Ioannis Patras, Georgios Tzimiropoulos,
- Abstract summary: We leverage the capabilities of Vision-and-Large-Language Models to enhance in-context emotion classification.
In the first stage, we propose prompting VLLMs to generate descriptions in natural language of the subject's apparent emotion.
In the second stage, the descriptions are used as contextual information and, along with the image input, are used to train a transformer-based architecture.
- Score: 66.23296689828152
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recognising emotions in context involves identifying the apparent emotions of an individual, taking into account contextual cues from the surrounding scene. Previous approaches to this task have involved the design of explicit scene-encoding architectures or the incorporation of external scene-related information, such as captions. However, these methods often utilise limited contextual information or rely on intricate training pipelines. In this work, we leverage the groundbreaking capabilities of Vision-and-Large-Language Models (VLLMs) to enhance in-context emotion classification without introducing complexity to the training process in a two-stage approach. In the first stage, we propose prompting VLLMs to generate descriptions in natural language of the subject's apparent emotion relative to the visual context. In the second stage, the descriptions are used as contextual information and, along with the image input, are used to train a transformer-based architecture that fuses text and visual features before the final classification task. Our experimental results show that the text and image features have complementary information, and our fused architecture significantly outperforms the individual modalities without any complex training methods. We evaluate our approach on three different datasets, namely, EMOTIC, CAER-S, and BoLD, and achieve state-of-the-art or comparable accuracy across all datasets and metrics compared to much more complex approaches. The code will be made publicly available on github: https://github.com/NickyFot/EmoCommonSense.git
Related papers
- Analogist: Out-of-the-box Visual In-Context Learning with Image Diffusion Model [25.47573567479831]
We propose a novel inference-based visual ICL approach that exploits both visual and textual prompting techniques.
Our method is out-of-the-box and does not require fine-tuning or optimization.
arXiv Detail & Related papers (2024-05-16T17:59:21Z) - Universal Multimodal Representation for Language Understanding [110.98786673598015]
This work presents new methods to employ visual information as assistant signals to general NLP tasks.
For each sentence, we first retrieve a flexible number of images either from a light topic-image lookup table extracted over the existing sentence-image pairs.
Then, the text and images are encoded by a Transformer encoder and convolutional neural network, respectively.
arXiv Detail & Related papers (2023-01-09T13:54:11Z) - Visually-Augmented Language Modeling [137.36789885105642]
We propose a novel pre-training framework, named VaLM, to Visually-augment text tokens with retrieved relevant images for Language Modeling.
With the visually-augmented context, VaLM uses a visual knowledge fusion layer to enable multimodal grounded language modeling.
We evaluate the proposed model on various multimodal commonsense reasoning tasks, which require visual information to excel.
arXiv Detail & Related papers (2022-05-20T13:41:12Z) - Language Matters: A Weakly Supervised Pre-training Approach for Scene
Text Detection and Spotting [69.77701325270047]
This paper presents a weakly supervised pre-training method that can acquire effective scene text representations.
Our network consists of an image encoder and a character-aware text encoder that extract visual and textual features.
Experiments show that our pre-trained model improves F-score by +2.5% and +4.8% while transferring its weights to other text detection and spotting networks.
arXiv Detail & Related papers (2022-03-08T08:10:45Z) - SGEITL: Scene Graph Enhanced Image-Text Learning for Visual Commonsense
Reasoning [61.57887011165744]
multimodal Transformers have made great progress in the task of Visual Commonsense Reasoning.
We propose a Scene Graph Enhanced Image-Text Learning framework to incorporate visual scene graphs in commonsense reasoning.
arXiv Detail & Related papers (2021-12-16T03:16:30Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - External Knowledge Augmented Text Visual Question Answering [0.6445605125467573]
We propose a framework to extract, filter, and encode knowledge atop a standard multimodal transformer for vision language understanding tasks.
We generate results comparable to the state-of-the-art on two publicly available datasets.
arXiv Detail & Related papers (2021-08-22T13:21:58Z) - Leveraging Semantic Scene Characteristics and Multi-Stream Convolutional
Architectures in a Contextual Approach for Video-Based Visual Emotion
Recognition in the Wild [31.40575057347465]
We tackle the task of video-based visual emotion recognition in the wild.
Standard methodologies that rely solely on the extraction of bodily and facial features often fall short of accurate emotion prediction.
We aspire to alleviate this problem by leveraging visual context in the form of scene characteristics and attributes.
arXiv Detail & Related papers (2021-05-16T17:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.