TransTARec: Time-Adaptive Translating Embedding Model for Next POI Recommendation
- URL: http://arxiv.org/abs/2404.07096v1
- Date: Wed, 10 Apr 2024 15:36:59 GMT
- Title: TransTARec: Time-Adaptive Translating Embedding Model for Next POI Recommendation
- Authors: Yiping Sun,
- Abstract summary: Time plays an important role in next POI recommendation but is neglected in the recent proposed translating embedding methods.
We propose a time-adaptive translating embedding model (TransTARec) for next POI recommendation that naturally incorporates temporal influence, sequential dynamics, and user preference.
The superiority of TransTARec is confirmed by extensive experiments on real-world datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid growth of location acquisition technologies makes Point-of-Interest(POI) recommendation possible due to redundant user check-in records. In this paper, we focus on next POI recommendation in which next POI is based on previous POI. We observe that time plays an important role in next POI recommendation but is neglected in the recent proposed translating embedding methods. To tackle this shortage, we propose a time-adaptive translating embedding model (TransTARec) for next POI recommendation that naturally incorporates temporal influence, sequential dynamics, and user preference within a single component. Methodologically, we treat a (previous timestamp, user, next timestamp) triplet as a union translation vector and develop a neural-based fusion operation to fuse user preference and temporal influence. The superiority of TransTARec, which is confirmed by extensive experiments on real-world datasets, comes from not only the introduction of temporal influence but also the direct unification with user preference and sequential dynamics.
Related papers
- Preference Diffusion for Recommendation [50.8692409346126]
We propose PreferDiff, a tailored optimization objective for DM-based recommenders.
PreferDiff transforms BPR into a log-likelihood ranking objective to better capture user preferences.
It is the first personalized ranking loss designed specifically for DM-based recommenders.
arXiv Detail & Related papers (2024-10-17T01:02:04Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - SA-LSPL:Sequence-Aware Long- and Short- Term Preference Learning for next POI recommendation [19.40796508546581]
Point of Interest (POI) recommendation aims to recommend the POI for users at a specific time.
We propose a novel approach called Sequence-Aware Long- and Short-Term Preference Learning (SA-LSPL) for next-POI recommendation.
arXiv Detail & Related papers (2024-03-30T13:40:25Z) - Bayes-enhanced Multi-view Attention Networks for Robust POI
Recommendation [81.4999547454189]
Existing works assume the available POI check-ins reported by users are the ground-truth depiction of user behaviors.
In real application scenarios, the check-in data can be rather unreliable due to both subjective and objective causes.
We propose a Bayes-enhanced Multi-view Attention Network to address the uncertainty factors of the user check-ins.
arXiv Detail & Related papers (2023-11-01T12:47:38Z) - Attention Mixtures for Time-Aware Sequential Recommendation [10.017195276758454]
Transformers emerged as powerful methods for sequential recommendation.
We introduce MOJITO, an improved Transformer sequential recommender system.
We demonstrate the relevance of our approach, by empirically outperforming existing Transformers for sequential recommendation on several real-world datasets.
arXiv Detail & Related papers (2023-04-17T11:11:19Z) - GETNext: Trajectory Flow Map Enhanced Transformer for Next POI
Recommendation [11.236531335154401]
POI intends to forecast users immediate future movements given their current status and historical information, yielding great values for both users and service providers.
This problem is perceptibly complex because various data trends need to be considered together.
We propose a user-agnostic global trajectory flow map and a novel Graph Enhanced Transformer model (GETNext) to better exploit the extensive collaborative signals for a more accurate next POI prediction.
arXiv Detail & Related papers (2023-03-03T01:58:41Z) - Self-supervised Graph-based Point-of-interest Recommendation [66.58064122520747]
Next Point-of-Interest (POI) recommendation has become a prominent component in location-based e-commerce.
We propose a Self-supervised Graph-enhanced POI Recommender (S2GRec) for next POI recommendation.
In particular, we devise a novel Graph-enhanced Self-attentive layer to incorporate the collaborative signals from both global transition graph and local trajectory graphs.
arXiv Detail & Related papers (2022-10-22T17:29:34Z) - Modelling of Bi-directional Spatio-Temporal Dependence and Users'
Dynamic Preferences for Missing POI Check-in Identification [38.51964956686177]
We develop a model, named Bi-STDDP, which can integrate bi-directional-temporal dependence and users' dynamic preferences.
Results demonstrate significant improvements of our model compared with state-of-the-art methods.
arXiv Detail & Related papers (2021-12-31T03:54:37Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
We propose a novel constraint-augmented reinforcement learning (RL) framework to efficiently incorporate user preferences over time.
Specifically, we leverage a discriminator to detect recommendations violating user historical preference.
Our proposed framework is general and is further extended to the task of constrained text generation.
arXiv Detail & Related papers (2020-05-04T16:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.