SA-LSPL:Sequence-Aware Long- and Short- Term Preference Learning for next POI recommendation
- URL: http://arxiv.org/abs/2404.00367v1
- Date: Sat, 30 Mar 2024 13:40:25 GMT
- Title: SA-LSPL:Sequence-Aware Long- and Short- Term Preference Learning for next POI recommendation
- Authors: Bin Wang, Yan Zhang, Yan Ma, Yaohui Jin, Yanyan Xu,
- Abstract summary: Point of Interest (POI) recommendation aims to recommend the POI for users at a specific time.
We propose a novel approach called Sequence-Aware Long- and Short-Term Preference Learning (SA-LSPL) for next-POI recommendation.
- Score: 19.40796508546581
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The next Point of Interest (POI) recommendation aims to recommend the next POI for users at a specific time. As users' check-in records can be viewed as a long sequence, methods based on Recurrent Neural Networks (RNNs) have recently shown good applicability to this task. However, existing methods often struggle to fully explore the spatio-temporal correlations and dependencies at the sequence level, and don't take full consideration for various factors influencing users' preferences. To address these issues, we propose a novel approach called Sequence-Aware Long- and Short-Term Preference Learning (SA-LSPL) for next-POI recommendation. We combine various information features to effectively model users' long-term preferences. Specifically, our proposed model uses a multi-modal embedding module to embed diverse check-in details, taking into account both user's personalized preferences and social influences comprehensively. Additionally, we consider explicit spatio-temporal correlations at the sequence level and implicit sequence dependencies. Furthermore, SA-LSPL learns the spatio-temporal correlations of consecutive and non-consecutive visits in the current check-in sequence, as well as transition dependencies between categories, providing a comprehensive capture of user's short-term preferences. Extensive experiments on two real-world datasets demonstrate the superiority of SA-LSPL over state-of-the-art baseline methods.
Related papers
- Hierarchical Reinforcement Learning for Temporal Abstraction of Listwise Recommendation [51.06031200728449]
We propose a novel framework called mccHRL to provide different levels of temporal abstraction on listwise recommendation.
Within the hierarchical framework, the high-level agent studies the evolution of user perception, while the low-level agent produces the item selection policy.
Results observe significant performance improvement by our method, compared with several well-known baselines.
arXiv Detail & Related papers (2024-09-11T17:01:06Z) - Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects [84.6945070729684]
Self-supervised learning (SSL) has recently achieved impressive performance on various time series tasks.
This article reviews current state-of-the-art SSL methods for time series data.
arXiv Detail & Related papers (2023-06-16T18:23:10Z) - Multi-Behavior Sequential Recommendation with Temporal Graph Transformer [66.10169268762014]
We tackle the dynamic user-item relation learning with the awareness of multi-behavior interactive patterns.
We propose a new Temporal Graph Transformer (TGT) recommendation framework to jointly capture dynamic short-term and long-range user-item interactive patterns.
arXiv Detail & Related papers (2022-06-06T15:42:54Z) - Sequential Search with Off-Policy Reinforcement Learning [48.88165680363482]
We propose a highly scalable hybrid learning model that consists of an RNN learning framework and an attention model.
As a novel optimization step, we fit multiple short user sequences in a single RNN pass within a training batch, by solving a greedy knapsack problem on the fly.
We also explore the use of off-policy reinforcement learning in multi-session personalized search ranking.
arXiv Detail & Related papers (2022-02-01T06:52:40Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - Sequence Adaptation via Reinforcement Learning in Recommender Systems [8.909115457491522]
We propose the SAR model, which learns the sequential patterns and adjusts the sequence length of user-item interactions in a personalized manner.
In addition, we optimize a joint loss function to align the accuracy of the sequential recommendations with the expected cumulative rewards of the critic network.
Our experimental evaluation on four real-world datasets demonstrates the superiority of our proposed model over several baseline approaches.
arXiv Detail & Related papers (2021-07-31T13:56:46Z) - Context-aware short-term interest first model for session-based
recommendation [0.0]
We propose a context-aware short-term interest first model (CASIF)
The aim of this paper is improve the accuracy of recommendations by combining context and short-term interest.
In the end, the short-term and long-term interest are combined as the final interest and multiplied by the candidate vector to obtain the recommendation probability.
arXiv Detail & Related papers (2021-03-29T11:36:00Z) - TLSAN: Time-aware Long- and Short-term Attention Network for Next-item
Recommendation [0.0]
We propose a new Time-aware Long- and Short-term Attention Network (TLSAN)
TLSAN learns user-specific temporal taste via trainable personalized time position embeddings with category-aware correlations in long-term behaviors.
Long- and short-term feature-wise attention layers are proposed to effectively capture users' long- and short-term preferences for accurate recommendation.
arXiv Detail & Related papers (2021-03-16T10:51:57Z) - STP-UDGAT: Spatial-Temporal-Preference User Dimensional Graph Attention
Network for Next POI Recommendation [22.705788963791445]
Next Point-of-Interest (POI) recommendation is a longstanding problem across the domains of Location-Based Social Networks (LBSN) and transportation.
Recent Recurrent Neural Network (RNN) based approaches learn POI-POI relationships in a local view based on independent user visit sequences.
We propose a novel explore-exploit model that concurrently exploits personalized user preferences and explores new POIs in global spatial-temporal-preference neighbourhoods.
arXiv Detail & Related papers (2020-10-06T04:03:42Z) - Sequential Recommender via Time-aware Attentive Memory Network [67.26862011527986]
We propose a temporal gating methodology to improve attention mechanism and recurrent units.
We also propose a Multi-hop Time-aware Attentive Memory network to integrate long-term and short-term preferences.
Our approach is scalable for candidate retrieval tasks and can be viewed as a non-linear generalization of latent factorization for dot-product based Top-K recommendation.
arXiv Detail & Related papers (2020-05-18T11:29:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.