Making Software Development More Diverse and Inclusive: Key Themes, Challenges, and Future Directions
- URL: http://arxiv.org/abs/2404.07142v2
- Date: Fri, 28 Feb 2025 09:37:23 GMT
- Title: Making Software Development More Diverse and Inclusive: Key Themes, Challenges, and Future Directions
- Authors: Sonja M. Hyrynsalmi, Sebastian Baltes, Chris Brown, Rafael Prikladnicki, Gema Rodriguez-Perez, Alexander Serebrenik, Jocelyn Simmonds, Bianca Trinkenreich, Yi Wang, Grischa Liebel,
- Abstract summary: We identify six themes around the theme challenges and opportunities to improve Software Developer Diversity and Inclusion (SDDI)<n>We identify benefits, harms, and future research directions for the four main themes.<n>We discuss the remaining two themes, Artificial Intelligence & SDDI and AI & Computer Science education, which have a cross-cutting effect on the other themes.
- Score: 50.545824691484796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Introduction: Digital products increasingly reshape industries, influencing human behavior and decision-making. However, the software development teams developing these systems often lack diversity, which may lead to designs that overlook the needs, equal treatment or safety of diverse user groups. These risks highlight the need for fostering diversity and inclusion in software development to create safer, more equitable technology. Method: This research is based on insights from an academic meeting in June 2023 involving 23 software engineering researchers and practitioners. We used the collaborative discussion method 1-2-4-ALL as a systematic research approach and identified six themes around the theme challenges and opportunities to improve Software Developer Diversity and Inclusion (SDDI). We identified benefits, harms, and future research directions for the four main themes. Then, we discuss the remaining two themes, Artificial Intelligence & SDDI and AI & Computer Science education, which have a cross-cutting effect on the other themes. Results: This research explores the key challenges and research opportunities for promoting SDDI, providing a roadmap to guide both researchers and practitioners. We underline that research around SDDI requires a constant focus on maximizing benefits while minimizing harms, especially to vulnerable groups. As a research community, we must strike this balance in a responsible way.
Related papers
- Towards deployment-centric multimodal AI beyond vision and language [67.02589156099391]
We advocate a deployment-centric workflow that incorporates deployment constraints early to reduce the likelihood of undeployable solutions.
We identify common multimodal-AI-specific challenges shared across disciplines and examine three real-world use cases.
By fostering multidisciplinary dialogue and open research practices, our community can accelerate deployment-centric development for broad societal impact.
arXiv Detail & Related papers (2025-04-04T17:20:05Z) - I Felt Pressured to Give 100% All the Time: How Are Neurodivergent Professionals Being Included in Software Development Teams? [0.46873264197900916]
This study seeks to understand the work experiences of neurodivergent professionals acting in different software development roles.
We applied the Sociotechnical Theory (STS) to investigate how the social structures of organizations and their respective work technologies influence the inclusion of these professionals.
arXiv Detail & Related papers (2025-03-12T02:28:59Z) - Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.
Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - How Mature is Requirements Engineering for AI-based Systems? A Systematic Mapping Study on Practices, Challenges, and Future Research Directions [5.6818729232602205]
It is unclear if existing RE methods are sufficient or if new ones are needed to address these challenges.
Existing RE4AI research focuses mainly on requirements analysis and elicitation, with most practices applied in these areas.
We identified requirements specification, explainability, and the gap between machine learning engineers and end-users as the most prevalent challenges.
arXiv Detail & Related papers (2024-09-11T11:28:16Z) - The Future of Software Engineering in an AI-Driven World [4.915744683251151]
In the next five years, we will likely see an increasing symbiotic partnership between human developers and AI.
We present our vision of the future of software development in an AI-Driven world and explore the key challenges that our research community should address to realize this vision.
arXiv Detail & Related papers (2024-06-11T21:46:19Z) - The Role of Generative AI in Software Development Productivity: A Pilot Case Study [0.0]
This paper investigates the integration of generative AI tools within software development.
Through a pilot case study, we gathered valuable experiences on the integration of generative AI tools into their daily work routines.
Our findings reveal a generally positive perception of these tools in individual productivity while also highlighting the need to address identified limitations.
arXiv Detail & Related papers (2024-06-01T21:51:33Z) - A Survey of Neural Code Intelligence: Paradigms, Advances and Beyond [84.95530356322621]
This survey presents a systematic review of the advancements in code intelligence.
It covers over 50 representative models and their variants, more than 20 categories of tasks, and an extensive coverage of over 680 related works.
Building on our examination of the developmental trajectories, we further investigate the emerging synergies between code intelligence and broader machine intelligence.
arXiv Detail & Related papers (2024-03-21T08:54:56Z) - In-IDE Human-AI Experience in the Era of Large Language Models; A
Literature Review [2.6703221234079946]
The study of in-IDE Human-AI Experience is critical in understanding how these AI tools are transforming the software development process.
We conducted a literature review to study the current state of in-IDE Human-AI Experience research.
arXiv Detail & Related papers (2024-01-19T14:55:51Z) - Industrial Challenges in Secure Continuous Development [0.7734726150561089]
The intersection between security and continuous software engineering has been of great interest since the early years of the agile development movement.
This paper summarizes a relevant part of our endeavors in which we validated challenges with several practitioners of different roles.
More than framing a set of challenges, we conclude by presenting four key research directions we identified for practitioners and researchers to delineate future work.
arXiv Detail & Related papers (2024-01-12T12:02:16Z) - The GitHub Development Workflow Automation Ecosystems [47.818229204130596]
Large-scale software development has become a highly collaborative endeavour.
This chapter explores the ecosystems of development bots and GitHub Actions.
It provides an extensive survey of the state-of-the-art in this domain.
arXiv Detail & Related papers (2023-05-08T15:24:23Z) - Generative AI Assistants in Software Development Education: A vision for
integrating Generative AI into educational practice, not instinctively
defending against it [10.238740117460386]
generative AI (GAI) assistants have ignited peoples' imaginations (and fears)
It is unclear how the industry will adapt, but the move to integrate these technologies by large software companies is a clear indication of intent and direction.
arXiv Detail & Related papers (2023-03-24T11:45:52Z) - Human-Centered Responsible Artificial Intelligence: Current & Future
Trends [76.94037394832931]
In recent years, the CHI community has seen significant growth in research on Human-Centered Responsible Artificial Intelligence.
All of this work is aimed at developing AI that benefits humanity while being grounded in human rights and ethics, and reducing the potential harms of AI.
In this special interest group, we aim to bring together researchers from academia and industry interested in these topics to map current and future research trends.
arXiv Detail & Related papers (2023-02-16T08:59:42Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Building an AI-ready RSE Workforce [0.0]
Machine learning and deep learning are being applied in every aspect of the research software development lifecycles.
We discuss our views on today's challenges and opportunities that AI has presented on research software development and engineers.
arXiv Detail & Related papers (2021-11-09T02:36:24Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z) - Software engineering for artificial intelligence and machine learning
software: A systematic literature review [6.681725960709127]
This study aims to investigate how software engineering has been applied in the development of AI/ML systems.
Main challenges faced by professionals are in areas of testing, AI software quality, and data management.
arXiv Detail & Related papers (2020-11-07T11:06:28Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.