An Indeterminacy-based Ontology for Quantum Theory
- URL: http://arxiv.org/abs/2404.07197v3
- Date: Thu, 8 Aug 2024 16:00:33 GMT
- Title: An Indeterminacy-based Ontology for Quantum Theory
- Authors: Francisco Pipa,
- Abstract summary: I present and defend a new ontology for quantum theories (or sinterpretation'' of quantum theory) called Generative Quantum Interpretation (GQT)
GQT provides a series of important benefits that current widely discussed lack, namely, wave function realism and primitive primitive, without some of their costs.
I will argue that GQT should be taken seriously because it provides a series of important benefits that current widely discussed lack, namely, wave function realism and primitive primitive, without some of their costs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: I present and defend a new ontology for quantum theories (or ``interpretations'' of quantum theory) called Generative Quantum Theory (GQT). GQT postulates different sets of features, and the combination of these different features can help generate different quantum theories. Furthermore, this ontology makes quantum indeterminacy and determinacy play an important explanatory role in accounting for when quantum systems whose values of their properties are indeterminate become determinate. The process via which determinate values arise varies between the different quantum theories. Moreover, quantum states represent quantum properties and structures that give rise to determinacy, and each quantum theory specifies a structure with certain features. I will focus on the following quantum theories: GRW, the Many-Worlds Interpretation, single-world relationalist theories such as Relational Quantum Mechanics, Bohmian Mechanics, hybrid classical-quantum theories, and Environmental Determinacy-based (EnD) Quantum Theory. I will argue that GQT should be taken seriously because it provides a series of important benefits that current widely discussed ontologies lack, namely, wave function realism and primitive ontology, without some of their costs. For instance, it helps generate quantum theories that are compatible with relativistic causality, such as EnD Quantum Theory. Also, GQT has the benefit of providing new ways to compare and evaluate quantum theories, which may lead to philosophical and scientific progress.
Related papers
- Does Quantum Mechanics Breed Larger, More Intricate Quantum Theories?
The Case for Experience-Centric Quantum Theory and the Interactome of Quantum
Theories [0.0]
We show that the recently proposed experience-centric quantum theory (ECQT) is a larger and richer theory of quantum behaviors.
ECQT allows the quantum information of the closed quantum system's developed state history to continually contribute to defining manybody interactions.
The interplay of unitarity and non-Markovianity in ECQT brings about a host of diverse behavioral phases.
arXiv Detail & Related papers (2023-08-04T16:33:24Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Is there a finite complete set of monotones in any quantum resource theory? [39.58317527488534]
We show that there does not exist a finite set of resource monotones which completely determines all state transformations.
We show that totally ordered theories allow for free transformations between all pure states.
arXiv Detail & Related papers (2022-12-05T18:28:36Z) - No-signalling constrains quantum computation with indefinite causal
structure [45.279573215172285]
We develop a formalism for quantum computation with indefinite causal structures.
We characterize the computational structure of higher order quantum maps.
We prove that these rules, which have a computational and information-theoretic nature, are determined by the more physical notion of the signalling relations between the quantum systems.
arXiv Detail & Related papers (2022-02-21T13:43:50Z) - Gravity, Quantum Fields and Quantum Information: Problems with classical
channel and stochastic theories [0.0]
We show that the notion of interactions mediated by an information channel is not, in general, equivalent to the treatment of interactions by quantum field theory.
Second, we point out that in general one cannot replace a quantum field by that of classical sources, or mock up the effects of quantum fluctuations by classical noises.
arXiv Detail & Related papers (2022-02-06T14:55:46Z) - The relational ontology of contemporary physics [0.0]
Quantum theory can be understood as pointing to an ontology of relations.
I observe that this reading of quantum mechanics is supported by the ubiquity of relationality in contemporary fundamental physics.
arXiv Detail & Related papers (2022-01-03T23:30:08Z) - Testing real quantum theory in an optical quantum network [1.6720048283946962]
We show that tests in the spirit of a Bell inequality can reveal quantum predictions in entanglement swapping scenarios.
We disproving real quantum theory as a universal physical theory.
arXiv Detail & Related papers (2021-11-30T05:09:36Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - An introductory review on resource theories of generalized nonclassical
light [0.0]
Quantum resource theory is perhaps the most revolutionary framework that quantum physics has ever experienced.
Generalized quantum optical framework strives to bring in several prosperous contemporary ideas.
arXiv Detail & Related papers (2021-03-23T05:10:44Z) - Quantum Entropic Causal Inference [30.939150842529052]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
arXiv Detail & Related papers (2021-02-23T15:51:34Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.