Object-Conditioned Energy-Based Attention Map Alignment in Text-to-Image Diffusion Models
- URL: http://arxiv.org/abs/2404.07389v1
- Date: Wed, 10 Apr 2024 23:30:54 GMT
- Title: Object-Conditioned Energy-Based Attention Map Alignment in Text-to-Image Diffusion Models
- Authors: Yasi Zhang, Peiyu Yu, Ying Nian Wu,
- Abstract summary: We introduce an object-conditioned Energy-Based Attention Map Alignment (EBAMA) method to address the aforementioned problems.
We show that an object-centric attribute binding loss naturally emerges by maximizing the log-likelihood of a $z$- parameterized energy-based model.
Our approach shows great promise in further enhancing the text-controlled image editing ability of diffusion models.
- Score: 36.984151318293726
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-to-image diffusion models have shown great success in generating high-quality text-guided images. Yet, these models may still fail to semantically align generated images with the provided text prompts, leading to problems like incorrect attribute binding and/or catastrophic object neglect. Given the pervasive object-oriented structure underlying text prompts, we introduce a novel object-conditioned Energy-Based Attention Map Alignment (EBAMA) method to address the aforementioned problems. We show that an object-centric attribute binding loss naturally emerges by approximately maximizing the log-likelihood of a $z$-parameterized energy-based model with the help of the negative sampling technique. We further propose an object-centric intensity regularizer to prevent excessive shifts of objects attention towards their attributes. Extensive qualitative and quantitative experiments, including human evaluation, on several challenging benchmarks demonstrate the superior performance of our method over previous strong counterparts. With better aligned attention maps, our approach shows great promise in further enhancing the text-controlled image editing ability of diffusion models.
Related papers
- Unlocking the Potential of Text-to-Image Diffusion with PAC-Bayesian Theory [33.78620829249978]
Text-to-image (T2I) diffusion models have revolutionized generative modeling by producing high-fidelity, diverse, and visually realistic images.
Recent attention-based methods have improved object inclusion and linguistic binding, but still face challenges such as attribute misbinding.
We propose a Bayesian approach that designs custom priors over attention distributions to enforce desirable properties.
Our approach treats the attention mechanism as an interpretable component, enabling fine-grained control and improved attribute-object alignment.
arXiv Detail & Related papers (2024-11-25T10:57:48Z) - Towards Small Object Editing: A Benchmark Dataset and A Training-Free Approach [13.262064234892282]
Small object generation has been limited due to difficulties in aligning cross-modal attention maps between text and these objects.
Our approach offers a training-free method that significantly mitigates this alignment issue with local and global attention guidance.
Preliminary results demonstrate the effectiveness of our method, showing marked improvements in the fidelity and accuracy of small object generation compared to existing models.
arXiv Detail & Related papers (2024-11-03T12:38:23Z) - Magnet: We Never Know How Text-to-Image Diffusion Models Work, Until We Learn How Vision-Language Models Function [13.588643982359413]
We critically examine the limitations of the CLIP text encoder in understanding attributes and investigate how this affects diffusion models.
We propose textbf Magnet, a novel training-free approach to tackle the attribute binding problem.
arXiv Detail & Related papers (2024-09-30T05:36:24Z) - DiffUHaul: A Training-Free Method for Object Dragging in Images [78.93531472479202]
We propose a training-free method, dubbed DiffUHaul, for the object dragging task.
We first apply attention masking in each denoising step to make the generation more disentangled across different objects.
In the early denoising steps, we interpolate the attention features between source and target images to smoothly fuse new layouts with the original appearance.
arXiv Detail & Related papers (2024-06-03T17:59:53Z) - Separate-and-Enhance: Compositional Finetuning for Text2Image Diffusion
Models [58.46926334842161]
This work illuminates the fundamental reasons for such misalignment, pinpointing issues related to low attention activation scores and mask overlaps.
We propose two novel objectives, the Separate loss and the Enhance loss, that reduce object mask overlaps and maximize attention scores.
Our method diverges from conventional test-time-adaptation techniques, focusing on finetuning critical parameters, which enhances scalability and generalizability.
arXiv Detail & Related papers (2023-12-10T22:07:42Z) - Energy-Based Cross Attention for Bayesian Context Update in
Text-to-Image Diffusion Models [62.603753097900466]
We present a novel energy-based model (EBM) framework for adaptive context control by modeling the posterior of context vectors.
Specifically, we first formulate EBMs of latent image representations and text embeddings in each cross-attention layer of the denoising autoencoder.
Our latent EBMs further allow zero-shot compositional generation as a linear combination of cross-attention outputs from different contexts.
arXiv Detail & Related papers (2023-06-16T14:30:41Z) - Controlling Text-to-Image Diffusion by Orthogonal Finetuning [74.21549380288631]
We introduce a principled finetuning method -- Orthogonal Finetuning (OFT) for adapting text-to-image diffusion models to downstream tasks.
Unlike existing methods, OFT can provably preserve hyperspherical energy which characterizes the pairwise neuron relationship on the unit hypersphere.
We empirically show that our OFT framework outperforms existing methods in generation quality and convergence speed.
arXiv Detail & Related papers (2023-06-12T17:59:23Z) - Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image
Diffusion Models [103.61066310897928]
Recent text-to-image generative models have demonstrated an unparalleled ability to generate diverse and creative imagery guided by a target text prompt.
While revolutionary, current state-of-the-art diffusion models may still fail in generating images that fully convey the semantics in the given text prompt.
We analyze the publicly available Stable Diffusion model and assess the existence of catastrophic neglect, where the model fails to generate one or more of the subjects from the input prompt.
We introduce the concept of Generative Semantic Nursing (GSN), where we seek to intervene in the generative process on the fly during inference time to improve the faithfulness
arXiv Detail & Related papers (2023-01-31T18:10:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.