Unlocking the Potential of Text-to-Image Diffusion with PAC-Bayesian Theory
- URL: http://arxiv.org/abs/2411.17472v1
- Date: Mon, 25 Nov 2024 10:57:48 GMT
- Title: Unlocking the Potential of Text-to-Image Diffusion with PAC-Bayesian Theory
- Authors: Eric Hanchen Jiang, Yasi Zhang, Zhi Zhang, Yixin Wan, Andrew Lizarraga, Shufan Li, Ying Nian Wu,
- Abstract summary: Text-to-image (T2I) diffusion models have revolutionized generative modeling by producing high-fidelity, diverse, and visually realistic images.
Recent attention-based methods have improved object inclusion and linguistic binding, but still face challenges such as attribute misbinding.
We propose a Bayesian approach that designs custom priors over attention distributions to enforce desirable properties.
Our approach treats the attention mechanism as an interpretable component, enabling fine-grained control and improved attribute-object alignment.
- Score: 33.78620829249978
- License:
- Abstract: Text-to-image (T2I) diffusion models have revolutionized generative modeling by producing high-fidelity, diverse, and visually realistic images from textual prompts. Despite these advances, existing models struggle with complex prompts involving multiple objects and attributes, often misaligning modifiers with their corresponding nouns or neglecting certain elements. Recent attention-based methods have improved object inclusion and linguistic binding, but still face challenges such as attribute misbinding and a lack of robust generalization guarantees. Leveraging the PAC-Bayes framework, we propose a Bayesian approach that designs custom priors over attention distributions to enforce desirable properties, including divergence between objects, alignment between modifiers and their corresponding nouns, minimal attention to irrelevant tokens, and regularization for better generalization. Our approach treats the attention mechanism as an interpretable component, enabling fine-grained control and improved attribute-object alignment. We demonstrate the effectiveness of our method on standard benchmarks, achieving state-of-the-art results across multiple metrics. By integrating custom priors into the denoising process, our method enhances image quality and addresses long-standing challenges in T2I diffusion models, paving the way for more reliable and interpretable generative models.
Related papers
- Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending [54.26862913139299]
We introduce a novel framework Towards Effective user Attribution for latent diffusion models via Watermark-Informed Blending (TEAWIB)
TEAWIB incorporates a unique ready-to-use configuration approach that allows seamless integration of user-specific watermarks into generative models.
Experiments validate the effectiveness of TEAWIB, showcasing the state-of-the-art performance in perceptual quality and attribution accuracy.
arXiv Detail & Related papers (2024-09-17T07:52:09Z) - TALE: Training-free Cross-domain Image Composition via Adaptive Latent Manipulation and Energy-guided Optimization [59.412236435627094]
TALE is a training-free framework harnessing the generative capabilities of text-to-image diffusion models.
We equip TALE with two mechanisms dubbed Adaptive Latent Manipulation and Energy-guided Latent Optimization.
Our experiments demonstrate that TALE surpasses prior baselines and attains state-of-the-art performance in image-guided composition.
arXiv Detail & Related papers (2024-08-07T08:52:21Z) - MS-Diffusion: Multi-subject Zero-shot Image Personalization with Layout Guidance [6.4680449907623006]
This research introduces the MS-Diffusion framework for layout-guided zero-shot image personalization with multi-subjects.
The proposed multi-subject cross-attention orchestrates inter-subject compositions while preserving the control of texts.
arXiv Detail & Related papers (2024-06-11T12:32:53Z) - Towards Better Text-to-Image Generation Alignment via Attention Modulation [16.020834525343997]
We propose an attribution-focusing mechanism, a training-free phase-wise mechanism by modulation of attention for diffusion model.
An object-focused masking scheme and a phase-wise dynamic weight control mechanism are integrated into the cross-attention modules.
The experimental results in various alignment scenarios demonstrate that our model attains better image-text alignment with minimal additional computational cost.
arXiv Detail & Related papers (2024-04-22T06:18:37Z) - Object-Conditioned Energy-Based Attention Map Alignment in Text-to-Image Diffusion Models [36.984151318293726]
We introduce an object-conditioned Energy-Based Attention Map Alignment (EBAMA) method to address the aforementioned problems.
We show that an object-centric attribute binding loss naturally emerges by maximizing the log-likelihood of a $z$- parameterized energy-based model.
Our approach shows great promise in further enhancing the text-controlled image editing ability of diffusion models.
arXiv Detail & Related papers (2024-04-10T23:30:54Z) - Enhancing Semantic Fidelity in Text-to-Image Synthesis: Attention
Regulation in Diffusion Models [23.786473791344395]
Cross-attention layers in diffusion models tend to disproportionately focus on certain tokens during the generation process.
We introduce attention regulation, an on-the-fly optimization approach at inference time to align attention maps with the input text prompt.
Experiment results show that our method consistently outperforms other baselines.
arXiv Detail & Related papers (2024-03-11T02:18:27Z) - Instilling Multi-round Thinking to Text-guided Image Generation [72.2032630115201]
Single-round generation often overlooks crucial details, particularly in the realm of fine-grained changes like shoes or sleeves.
We introduce a new self-supervised regularization, ie, multi-round regularization, which is compatible with existing methods.
It builds upon the observation that the modification order generally should not affect the final result.
arXiv Detail & Related papers (2024-01-16T16:19:58Z) - Separate-and-Enhance: Compositional Finetuning for Text2Image Diffusion
Models [58.46926334842161]
This work illuminates the fundamental reasons for such misalignment, pinpointing issues related to low attention activation scores and mask overlaps.
We propose two novel objectives, the Separate loss and the Enhance loss, that reduce object mask overlaps and maximize attention scores.
Our method diverges from conventional test-time-adaptation techniques, focusing on finetuning critical parameters, which enhances scalability and generalizability.
arXiv Detail & Related papers (2023-12-10T22:07:42Z) - Controlling Text-to-Image Diffusion by Orthogonal Finetuning [74.21549380288631]
We introduce a principled finetuning method -- Orthogonal Finetuning (OFT) for adapting text-to-image diffusion models to downstream tasks.
Unlike existing methods, OFT can provably preserve hyperspherical energy which characterizes the pairwise neuron relationship on the unit hypersphere.
We empirically show that our OFT framework outperforms existing methods in generation quality and convergence speed.
arXiv Detail & Related papers (2023-06-12T17:59:23Z) - Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image
Diffusion Models [103.61066310897928]
Recent text-to-image generative models have demonstrated an unparalleled ability to generate diverse and creative imagery guided by a target text prompt.
While revolutionary, current state-of-the-art diffusion models may still fail in generating images that fully convey the semantics in the given text prompt.
We analyze the publicly available Stable Diffusion model and assess the existence of catastrophic neglect, where the model fails to generate one or more of the subjects from the input prompt.
We introduce the concept of Generative Semantic Nursing (GSN), where we seek to intervene in the generative process on the fly during inference time to improve the faithfulness
arXiv Detail & Related papers (2023-01-31T18:10:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.